17 resultados para Beam angle selection
Resumo:
Solid state nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for studying structural and dynamical properties of disordered and partially ordered materials, such as glasses, polymers, liquid crystals, and biological materials. In particular, twodimensional( 2D) NMR methods such as ^^C-^^C correlation spectroscopy under the magicangle- spinning (MAS) conditions have been used to measure structural constraints on the secondary structure of proteins and polypeptides. Amyloid fibrils implicated in a broad class of diseases such as Alzheimer's are known to contain a particular repeating structural motif, called a /5-sheet. However, the details of such structures are poorly understood, primarily because the structural constraints extracted from the 2D NMR data in the form of the so-called Ramachandran (backbone torsion) angle distributions, g{^,'4)), are strongly model-dependent. Inverse theory methods are used to extract Ramachandran angle distributions from a set of 2D MAS and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) data. This is a vastly underdetermined problem, and the stability of the inverse mapping is problematic. Tikhonov regularization is a well-known method of improving the stability of the inverse; in this work it is extended to use a new regularization functional based on the Laplacian rather than on the norm of the function itself. In this way, one makes use of the inherently two-dimensional nature of the underlying Ramachandran maps. In addition, a modification of the existing numerical procedure is performed, as appropriate for an underdetermined inverse problem. Stability of the algorithm with respect to the signal-to-noise (S/N) ratio is examined using a simulated data set. The results show excellent convergence to the true angle distribution function g{(j),ii) for the S/N ratio above 100.
Resumo:
This investigation comprises a comparison of experimental and theoretical dechanneling of MeV protons in copper single crystals. Dechanneling results when an ion's transverse energy increases to the value where the ion can undergo small impact parameter collisions with individual atoms. Depth dependent dechanneling rates were determined as functions of lattice temperature, ion beam energy and crystal axis orientation. Ion beam energies were IMeV and 2MeV,temperatures ranged from 35 K to 280 K and the experiment was carried out along both the (lOa) and <110) axes. Experimental data took the form of aligned and random Rutherford backscattered energy spectra. Dechanneling rates were extracted from these spectra using a single scattering theory that took explicit account of the different stopping powers experienced by channeled and dechanneled ions and also included a correction factor to take into account multiple scattering effects along the ion's trajectory. The assumption of statistical equilibrium and small angle scattering of the channeled ions allows a description of dechanneling in terms of the solution of a diffusion like equation which contains a so called diffusion function. The diffusion function is shown to be related to the increase in average transverse energy. Theoretical treatments of increase in average transverse energy due to collisions of projectiles with channel electrons and thermal perturbations in the lattice potential are reviewed. Using the diffusion equation and the electron density in the channel centre as a fitting parameter dechanneling rates are extracted. Excellent agreement between theory and experiment has been demonstrated. Electron densities determined in the fitting procedure appear to be realistic. The surface parameters show themselves to be good indicators of the quality of the crystal.
Resumo:
How does fire affect the plant and animal community of the boreal forest? This study attempted to examine the changes in plant composition and productivity, and small mammal demography brought about by fire in the northern boreal environment at Chick Lake, N.W.T. (65053fN, 128°14,W). Two 5*6 ha plots measuring 375m x 150m were selected for study during the summers of 1973 and 197^. One had been unburned for 120 years, the other was part of a fire which burned in the spring of 1969. Grids of 15m x 15m were established in each plot and meter square quadrats taken at each of the 250 grid intersections in order to determine plant composition and density. Aerial primary production was assessed by clipping and drying 80 samples of terminal new production for each species under investigation. Small mammal populations were sampled by placing a Sherman live trap at each grid intersection for ten days in every month. The two plots were similar in plant species composition which suggested that most regrowth in the burned area was from rootstocks which survived the fire. The plant data were submitted to a cluster analysis that revealed nine separate species associations, six of which occured in the burned area and eight of which occured in the control. These were subsequently treated as habitats for purposes of comparison with small mammal distributions. The burned area showed a greater productivity in flowers and fruits although total productivity in the control area was higher due to a large contribution from the non-vascular component. Maximum aerial productivity as dry wieght was measured at 157.1 g/m and 207.8 g/m for the burn and control respectively. Microtus pennsylvanicus and Clethrionomys rutilus were the two most common small mammals encountered; Microtus xanthognathus, Synaptomys borealis, and Phenacomys intermedius also occured in the area. Populations of M. pennsylvanicus and C. rutilus were high during the summer of 1973; however, M. pennsylvanicus was rare on the control but abundant on the burn, while C. rutilus was rare on the burn but abundant in the control. During the summer of 197^ populations declined, with the result that few voles of any species were caught in the burn while equal numbers of the two species were caught in the control. During the summer of 1973 M. pennsylvanicus showed a positive association to the most productive habitat type in the burn which was avoided by C. rutilus. In the control £• rutilus showed a similar positive association to the most productive habitat type which was avoided by M. pennsylvanicus. In all cases for the high population year of 1973# the two species never overlapped in habitat preference. When populations declined in 197^f "both species showed a strong association for the most productive habitat in the control. This would suggest that during a high population year, an abundant species can exclude competitors from a chosen habitat, but that this dominance decreases as population levels decrease. It is possible that M. pennsylvanicus is a more efficient competitor in a recently burned environment, while C. rutilus assumes this role once non-vascular regrowth becomes extensive.
Resumo:
This work includes two major parts. The first part of the work concentrated on the studies of the application of the highperfonnance liquid chromatography-particle beam interface-mass spectrometry system of some pesticides. Factors that have effects on the detection sensitivity were studied. The linearity ranges and detection limits of ten pesticides are also given in this work. The second part of the work concentrated on the studies of the reduction phenomena of nitro compounds in the HPLC-PB-MS system. Direct probe mass spectrometry and gas chromatography-mass spectrometry techniques were also used in the work. Factors that have effects on the reduction of the nitro compounds were studied, and the possible explanation is proposed. The final part of this work included the studies of reduction behavior of some other compounds in the HPLC-PB-MS system, included in them are: quinones, sulfoxides, and sulfones.
Resumo:
A. strain of Drosophila melanog-aster deficient in null amylase activity (Amylase ) was isolated from a wild null population of flies. The survivorship of Amylase homozygous flies is very low when the principal dietary carbohydrate source is starch. However, the survivorship of the null Amylase genotype is comparable to the wild type when the dietary starch is replaced by glucose. In addition, the null viability of the amylase-producing and Amylase strains is comparable v and very lm<] f on a medium with no carbohydrates . Furthermore, amylase-producing genotypes were shovm to excrete enzymatically active amylase protein into the food medium. The excreted amylase causes the external breakdown of dietary starch to sugar. These results led to the following null prediction: the viability of the A.mvlase genotype (fed on a starch rich diet) might increase in the presence of individuals which were amylase-producing. It was shown experimentally that such an increase in viability did in fact occur and that this increase v\Tas proportional to the number of mnylase..::producing fli.es present. These results provide a unique example of a non-"competi ti ve inter-genotype interaction, and one where the underlying physio~ logical and biochemical mechanism has been fully understood.
Resumo:
One of the most common bee genera in the Niagara Region, the genus Ceratina (Hymenoptera: Apidae) is composed of four species, C. dupla, C. calcarata, the very rare C. strenua, and a previously unknown species provisionally named C. near dupla. The primary goal of this thesis was to investigate how these closely related species coexist with one another in the Niagara ~ee community. The first necessary step was to describe and compare the nesting biologies and life histories of the three most common species, C. dupla, C. calcarata and the new C. near dupla, which was conducted in 2008 via nest collections and pan trapping. Ceratina dupla and C. calcarata were common, each comprising 49% of the population, while C. near dupla was rare, comprising only 2% of the population. Ceratina dupla and C. near dupla both nested more commonly in teasel (Dipsacus sp.) in the sun, occasionally in raspberry (Rubus sp.) in the shade, and never in shady sumac (Rhus sp.), while C. calcarata nested most commonly in raspberry and sumac (shaded) and occasionally in teasel (sunny). Ceratina near dupla differed from both C. dupla and C. calcarata in that it appeared to be partially bivoltine, with some females founding nests very early and then again very late in the season. To examine the interactions and possible competition for nests that may be taking place between C. dupla and C. calcarata, a nest choice experiment was conducted in 2009. This experiment allowed both species to choose among twigs from all three substrates in the sun and in the shade. I then compared the results from 2008 (where bees chose from what was available), to where they nested when given all options (2009 experiment). Both C. dupla and C. calcarata had the same preferences for microhabitat and nest substrate in 2009, that being raspberry and sumac twigs in the sun. As that microhabitat and nest substrate combination is extremely rare in nature, both species must make a choice. In nature Ceratina dupla nests more often in the preferred microhabitat (sun), while C. calcarata nests in the preferred substrate (raspberry). Nesting in the shade also leads to smaller clutch sizes, higher parasitism and lower numbers of live brood in C. calcarata, suggesting that C. dupla may be outcompeting C. calcarata for the sunny nesting sites. The development and host preferences of Ceratina parasitoids were also examined. Ceratina species in Niagara were parasitized by no less than eight species of arthropod. Six of these were wasps from the superfamily Chalcidoidea (Hymenoptera), one was a wasp from the family Ichneumonidae (Hymenoptera) and one was a physogastric mite from the family Pyemotidae (Acari). Parasites shared a wide range of developmental strategies, from ichneumonid larvae that needed to consume multiple Ceratina immatures to complete development, to the species from the Eulophidae (Baryscapus) and Encyrtidae (Coelopencyrtus), in which multiple individuals completed development inside a single Ceratina host. Biological data on parasitoids is scarce in the scientific literature, and this Chapter documents these interactions for future research.
Resumo:
Four men, same men from a previous photograph, standing in the water of the tunnel.
Resumo:
A selection of pages from the program for the Order of Canada Investiture Ceremony in 2003 when Dorothy Wetherald Rungeling was a recipient.
Resumo:
Black and white photographs, 19 cm x 24 cm of the interior of an unidentified house the sitting room which was mentioned above, but this shot is taken from farther away. A fireplace is visible in the room. The photograph was taken by Wurts Brothers General Photographers of New York City (2 copies).
Resumo:
Black and white photograph, mounted on board, 7 cm x 4 cm, of Julia in a side angle face pose. This photo was taken by Fred Pfaff of Peach Street, Erie, Pennsylvania.
Resumo:
Black and white photograph, 23 cm x 17 cm, of Margaret Julia Woodruff Band in a seated position, taken from a side angle. She is wearing a lace dress. The photo was taken by Dudley Hoyt of New York.
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and deterministic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel metaheuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS metaheuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.