5 resultados para apex predators
em REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru
Resumo:
Se plantea la hipótesis de que la merluza requiere un manejo basado en el enfoque ecosistémico para su recuperación. El objetivo es realizar simulaciones con un modelo ecotrófico multiespecífico, con dos estadios de merluza, para entender las interacciones tróficas de la merluza con sus presas, competidores y depredadores. Las simulaciones con factores biológicos y ambientales, sugirieron que la reducción poblacional de la merluza se atribuye más a factores biológicos (relaciones tróficas y presión de pesca) que a factores ambientales. En general, las proyecciones de biomasa del modelo sugirieron que el stock de merluza a bajos niveles poblacionales presenta una limitada resiliencia.
Resumo:
Se hipotetiza que la mortalidad por pesca ocasiona efectos ecosistémicos, no sólo sobre la anchoveta, sino también sobre otros componentes del ecosistema, tales como los depredadores tope. El objetivo es realizar simulaciones con un modelo ecotrófico multiespecífico cubriendo el decenio de los años 2000, cambiando la mortalidad por pesca y analizando las variaciones en la biomasa de anchoveta, aves guaneras y lobos marinos. Se usó el Índice de Oscilación Peruano (IOP) para incluir una mediación que afecte la vulnerabilidad de las presas de la anchoveta. Se comparó el ajuste de los datos observados, usando dos tipos de dieta para anchoveta (fitoplanctófaga y zooplanctófaga). Se realizaron proyecciones de la biomasa, cambiando la mortalidad por pesca de 0,0 a 1,4 año-1. Las simulaciones con la dieta zooplanctófaga, que eleva el nivel trófico de la anchoveta de 2,35 a 3,36, produjo un menor ajuste entre los datos observados y simulados. La relación inversa entre la mortalidad por pesca y la biomasa desovante de la anchoveta, mostró que mortalidades por pesca entre 0,8 y 1,4 año-1 estarían asociadas a una biomasa desovante mínima de anchoveta, tomando en consideración sus relaciones multiespecíficas. También se encontró una relación inversa entre la mortalidad por pesca y las poblaciones de aves guaneras y lobos marinos.
Resumo:
The northern Humboldt Current system (NHCS) off Peru is one of the most productive world marine regions. It represents less than 0.1% of the world ocean surface but presently sustains about 10% of the world fish catch, with the Peruvian anchovy or anchoveta Engraulis ringens as emblematic fish resource. Compared with other eastern boundary upwelling systems, the higher fish productivity of the NHCS cannot be explained by a corresponding higher primary productivity. On another hand, the NHCS is the region where El Niño, and climate variability in general, is most notable. Also, surface oxygenated waters overlie an intense and extremely shallow Oxygen Minimum Zone (OMZ). In this context, the main objective of this study is to better understand the trophic flows in the NHCS using both stomach content and stable isotope analyses. The study focuses on a variety of organisms from low trophic levels such as zooplankton to top predators (seabirds and fur seals). The approach combines both long-term and specific studies on emblematic species such as anchoveta, and sardine Sardinops sagax and a more inclusive analysis considering the 'global' food web in the recent years (2008 – 2012) using stable isotope analysis. Revisiting anchovy and sardine we show that whereas phytoplankton largely dominated anchoveta and sardine diets in terms of numerical abundance, the carbon content of prey items indicated that zooplankton was by far the most important dietary component. Indeed for anchovy euphausiids contributed 67.5% of dietary carbon, followed by copepods (26.3%). Selecting the largest prey, the euphausiids, provide an energetic advantage for anchoveta in its ecosystem where oxygen depletion imposes strong metabolic constrain to pelagic fish. Sardine feed on smaller zooplankton than do anchoveta, with sardine diet consisting of smaller copepods and fewer euphausiids than anchoveta diet. Hence, trophic competition between sardine and anchovy in the northern Humboldt Current system is minimized by their partitioning of the zooplankton food resource based on prey size, as has been reported in other systems. These results suggest an ecological role for pelagic fish that challenges previous understanding of their position in the foodweb (zooplanktophagous instead of phytophagous), the functioning and the trophic models of the NHCS. Finally to obtain a more comprehensive vision of the relative trophic position of NHCS main components we used stable isotope analyses. For that purpose we analyzed the δ13C and δ15N stable isotope values of thirteen taxonomic categories collected off Peru from 2008 - 2011, i.e., zooplankton, fish, squids and air-breathing top predators. The δ15N isotope signature was strongly impacted by the species, the body length and the latitude. Along the Peruvian coast, the OMZ get more intense and shallow south of ~7.5ºS impacting the baseline nitrogen stable isotopes. Employing a linear mixed-effects modelling approach taking into account the latitudinal and body length effects, we provide a new vision of the relative trophic position of key ecosystem components. Also we confirm stomach content-based results on anchoveta Engraulis ringens and highlight the potential remarkable importance of an often neglected ecosystem component, the squat lobster Pleuroncodes monodon. Indeed, our results support the hypothesis according to which this species forage to some extent on fish eggs and larvae and can thus predate on the first life stages of exploited species. However, the δ13C values of these two species suggest that anchoveta and squat lobster do not exactly share the same habitat. This would potentially reduce some direct competition and/or predation.
Resumo:
L'étude du mouvement des organismes est essentiel pour la compréhension du fonctionnement des écosystèmes. Dans le cas des écosystèmes marins exploités, cela amène à s'intéresser aux stratégies spatiales des pêcheurs. L'une des approches les plus utilisées pour la modélisation du mouvement des prédateurs supé- rieurs est la marche aléatoire de Lévy. Une marche aléatoire est un modèle mathématique composé par des déplacements aléatoires. Dans le cas de Lévy, les longueurs des déplacements suivent une loi stable de Lévy. Dans ce cas également, les longueurs, lorsqu'elles tendent vers l'in ni (in praxy lorsqu'elles sont grandes, grandes par rapport à la médiane ou au troisième quartile par exemple), suivent une loi puissance caractéristique du type de marche aléatoire de Lévy (Cauchy, Brownien ou strictement Lévy). Dans la pratique, outre que cette propriété est utilisée de façon réciproque sans fondement théorique, les queues de distribution, notion par ailleurs imprécise, sont modélisée par des lois puissances sans que soient discutées la sensibilité des résultats à la dé nition de la queue de distribution, et la pertinence des tests d'ajustement et des critères de choix de modèle. Dans ce travail portant sur les déplacements observés de trois bateaux de pêche à l'anchois du Pérou, plusieurs modèles de queues de distribution (log-normal, exponentiel, exponentiel tronqué, puissance et puissance tronqué) ont été comparés ainsi que deux dé nitions possible de queues de distribution (de la médiane à l'in ni ou du troisième quartile à l'in ni). Au plan des critères et tests statistiques utilisés, les lois tronquées (exponentielle et puissance) sont apparues les meilleures. Elles intègrent en outre le fait que, dans la pratique, les bateaux ne dépassent pas une certaine limite de longueur de déplacement. Le choix de modèle est apparu sensible au choix du début de la queue de distribution : pour un même bateau, le choix d'un modèle tronqué ou l'autre dépend de l'intervalle des valeurs de la variable sur lequel le modèle est ajusté. Pour nir, nous discutons les implications en écologie des résultats de ce travail.
Resumo:
This work provides a contribution to a better understanding of the trophic ecology of important predators in the Northern Humboldt Current System, the jack mackerel (Trachurus murphyi), the chub mackerel (Scomber japonicus) and the jumbo squid (Dosidicus gigas) by the characterization of the highly variable feeding patterns of these species at different spatiotemporal scales. We provided new knowledge on the comparative trophic behaviour of these species, defined as opportunistic in previous investigations. For that purpose we applied a variety of statistical methods to an extensive dataset of 27,188 non-empty stomachs. We defined the spatial organization of the forage fauna of these predators and documented changes in prey composition according to predators’ size and spatiotemporal features of environment. Our results highligh the key role played by the dissolved oxygen. We also deciphered an important paradox on the jumbo squid diet: why do they hardly forage on the huge anchovy (Engraulis ringens) biomass distributed of coastal Peru? We showed that the shallow oxygen minimum zone present off coastal Peru could hamper the co-occurrence of jumbo squids and anchovies. In addition, we proposed a conceptual model on jumbo squid trophic ecology including the ontogenetic cycle, oxygen and prey availability. Moreover we showed that the trophic behaviour of jack mackerel and chub mackerel is adapted to forage on more accessible species such as for example the squat lobster Pleurocondes monodon and Zoea larvae. Besides, both predators present a trophic overlap. But jack mackerel was not as oracious as chub mackerel, contradictorily to what was observed by others authors. Fish diet presented a high spatiotemporal variability, and the shelf break appeared as a strong biogeographical frontier. Diet composition of our fish predators was not necessarily a consistent indicator of changes in prey biomass. El Niño events had a weak effect on the stomach fullness and diet composition of chub mackerel and jack mackerel. Moreover, decadal changes in diet diversity challenged the classic paradigm of positive correlation between species richness and temperature. Finally, the global patterns that we described in this work, illustrated the opportunistic foraging behaviour, life strategies and the high degree of plasticity of these species. Such behaviour allows adaptation to changes in the environment.