4 resultados para Vertical Data Distribution

em REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Analiza los datos colectados de la clorofila frente al Peru cerca de 9°S. Determinandose la profundidad a la que se enuentran y la concentración de oxigeno durante el dia y la noche.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analiza la distribución vertical de la anchoveta, tomada de la evaluación hidroacustica de los recursos pelagicos, colectada por el crucero BIC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El presente manual de uso del software de visualización de datos “Ocean Data View” (ODV) describe la exploración, análisis y visualización de datos oceanográficos según el formato de la colección mundial de base de datos del océano “World Ocean Database” (WOD). El manual comprende 6 ejercicios prácticos donde se describe paso a paso la creación de las metavariables, la importación de los datos y su visualización mediante mapas de latitud, longitud y gráficos de dispersión, secciones verticales y series de tiempo. Se sugiere el uso extensivo del ODV para la visualización de datos oceanográficos por el personal científico del IMARPE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes an original contribution to the understanding of shermen spatial behavior, based on the behavioral ecology and movement ecology paradigms. Through the analysis of Vessel Monitoring System (VMS) data, we characterized the spatial behavior of Peruvian anchovy shermen at di erent scales: (1) the behavioral modes within shing trips (i.e., searching, shing and cruising); (2) the behavioral patterns among shing trips; (3) the behavioral patterns by shing season conditioned by ecosystem scenarios; and (4) the computation of maps of anchovy presence proxy from the spatial patterns of behavioral mode positions. At the rst scale considered, we compared several Markovian (hidden Markov and semi-Markov models) and discriminative models (random forests, support vector machines and arti cial neural networks) for inferring the behavioral modes associated with VMS tracks. The models were trained under a supervised setting and validated using tracks for which behavioral modes were known (from on-board observers records). Hidden semi-Markov models performed better, and were retained for inferring the behavioral modes on the entire VMS dataset. At the second scale considered, each shing trip was characterized by several features, including the time spent within each behavioral mode. Using a clustering analysis, shing trip patterns were classi ed into groups associated to management zones, eet segments and skippers' personalities. At the third scale considered, we analyzed how ecological conditions shaped shermen behavior. By means of co-inertia analyses, we found signi cant associations between shermen, anchovy and environmental spatial dynamics, and shermen behavioral responses were characterized according to contrasted environmental scenarios. At the fourth scale considered, we investigated whether the spatial behavior of shermen re ected to some extent the spatial distribution of anchovy. Finally, this work provides a wider view of shermen behavior: shermen are not only economic agents, but they are also foragers, constrained by ecosystem variability. To conclude, we discuss how these ndings may be of importance for sheries management, collective behavior analyses and end-to-end models.