2 resultados para Rotational inertia
em REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru
Resumo:
Se trabajó utilizando una metodología basada en Modelos Lineales Generalizados (MLG). La CPUE fue expresada en toneladas por duración de viaje. Las variables explicativas utilizadas fueron el año, mes, capacidad de bodega, latitud, inercia espacial y distancia a la costa. El modelo tuvo un coeficiente de determinación de 0,485, explicando casi la mitad de la variabilidad de la CPUE observada. La variable con mayor influencia en el modelo fue la capacidad de bodega (49% de la varianza explicada), debido posiblemente a que la flota anchovetera posee una capacidad elevada de captura y que los recursos pelágicos tienden a hiper-agregarse, incluso cuando están siendo fuertemente explotados. La correlación entre la CPUE estandarizada y biomasa estimada por un modelo de captura a la edad (r=0,74) indica que el método basado en MLG es recomendable para la estandarización de la CPUE. Se propone a esta CPUE como una alternativa para monitorear la biomasa de la anchoveta.
Resumo:
This work proposes an original contribution to the understanding of shermen spatial behavior, based on the behavioral ecology and movement ecology paradigms. Through the analysis of Vessel Monitoring System (VMS) data, we characterized the spatial behavior of Peruvian anchovy shermen at di erent scales: (1) the behavioral modes within shing trips (i.e., searching, shing and cruising); (2) the behavioral patterns among shing trips; (3) the behavioral patterns by shing season conditioned by ecosystem scenarios; and (4) the computation of maps of anchovy presence proxy from the spatial patterns of behavioral mode positions. At the rst scale considered, we compared several Markovian (hidden Markov and semi-Markov models) and discriminative models (random forests, support vector machines and arti cial neural networks) for inferring the behavioral modes associated with VMS tracks. The models were trained under a supervised setting and validated using tracks for which behavioral modes were known (from on-board observers records). Hidden semi-Markov models performed better, and were retained for inferring the behavioral modes on the entire VMS dataset. At the second scale considered, each shing trip was characterized by several features, including the time spent within each behavioral mode. Using a clustering analysis, shing trip patterns were classi ed into groups associated to management zones, eet segments and skippers' personalities. At the third scale considered, we analyzed how ecological conditions shaped shermen behavior. By means of co-inertia analyses, we found signi cant associations between shermen, anchovy and environmental spatial dynamics, and shermen behavioral responses were characterized according to contrasted environmental scenarios. At the fourth scale considered, we investigated whether the spatial behavior of shermen re ected to some extent the spatial distribution of anchovy. Finally, this work provides a wider view of shermen behavior: shermen are not only economic agents, but they are also foragers, constrained by ecosystem variability. To conclude, we discuss how these ndings may be of importance for sheries management, collective behavior analyses and end-to-end models.