2 resultados para Predicted Distribution Data

em REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Los modelos de nicho ecológico permiten estudiar el efecto del ambiente sobre la distribución de las especies, relacionando datos de su distribución con información ambiental. El objetivo del presente estudio fue estimar el nicho ecológico y describir la variabilidad en la distribución espacial de la anchoveta (Engraulis ringens) mediante el uso de modelos estadísticos de nicho ecológico. Se trabajó con dos enfoques de análisis: por stocks (norte, centro y sur) en el Pacífico Sudoriental (PSO) y por estadios de desarrollo (pre-reclutas, reclutas y adultos) en la costa peruana. El modelo de nicho ecológico utilizó modelos aditivos generalizados, estimaciones georeferenciadas de presencia y ausencia de anchoveta e información de cuatro variables ambientales (temperatura superficial del mar, salinidad superficial del mar, concentración de clorofila a superficial y la profundidad de la oxiclina) entre los a˜nos 1985 y 2008. Se encontró que no existen diferencias en los nichos ecológicos de los tres stocks de anchoveta siendo los modelos que utilizaron la información de la anchoveta en todo el PSO los que lograron modelar el nicho de manera correcta. Respecto al análisis por estadios, se evidenció que cada estadio de desarrollo tiene distintas tolerancias a las variables ambientales consideradas en este trabajo, siendo los nichos de estadios menos desarrollados los que estuvieron incluidos dentro de los estadios más desarrollados. Se recomienda realizar estudios separados para cada estadio de desarrollo, lo cual permita comprender mejor las relaciones ecológicas encontradas en los resultados del nicho ecológico. Además se recomienda realizar simulaciones con modelos de nicho que incluyan más variables ambientales, las cuales puedan mejorar los mapas de distribución espacial de la anchoveta para los dos enfoques de análisis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes an original contribution to the understanding of shermen spatial behavior, based on the behavioral ecology and movement ecology paradigms. Through the analysis of Vessel Monitoring System (VMS) data, we characterized the spatial behavior of Peruvian anchovy shermen at di erent scales: (1) the behavioral modes within shing trips (i.e., searching, shing and cruising); (2) the behavioral patterns among shing trips; (3) the behavioral patterns by shing season conditioned by ecosystem scenarios; and (4) the computation of maps of anchovy presence proxy from the spatial patterns of behavioral mode positions. At the rst scale considered, we compared several Markovian (hidden Markov and semi-Markov models) and discriminative models (random forests, support vector machines and arti cial neural networks) for inferring the behavioral modes associated with VMS tracks. The models were trained under a supervised setting and validated using tracks for which behavioral modes were known (from on-board observers records). Hidden semi-Markov models performed better, and were retained for inferring the behavioral modes on the entire VMS dataset. At the second scale considered, each shing trip was characterized by several features, including the time spent within each behavioral mode. Using a clustering analysis, shing trip patterns were classi ed into groups associated to management zones, eet segments and skippers' personalities. At the third scale considered, we analyzed how ecological conditions shaped shermen behavior. By means of co-inertia analyses, we found signi cant associations between shermen, anchovy and environmental spatial dynamics, and shermen behavioral responses were characterized according to contrasted environmental scenarios. At the fourth scale considered, we investigated whether the spatial behavior of shermen re ected to some extent the spatial distribution of anchovy. Finally, this work provides a wider view of shermen behavior: shermen are not only economic agents, but they are also foragers, constrained by ecosystem variability. To conclude, we discuss how these ndings may be of importance for sheries management, collective behavior analyses and end-to-end models.