2 resultados para geochemistry, isotopy, Ocean Island Basalts

em Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cape Verde is a tropical oceanic ecosystem, highly fragmented and dispersed, with islands physically isolated by distance and depth. To understand how isolation affects the ecological variability in this archipelago, we conducted a research project on the community structure of the 18 commercially most important demersal fishes. An index of ecological distance based on species relative dominance (Di) is developed from Catch Per Unit Effort, derived from an extensive database of artisanal fisheries. Two ecological measures of distance between islands are calculated: at the species level, DDi, and at the community level, DD (sum of DDi). A physical isolation factor (Idb) combining distance (d) and bathymetry (b) is proposed. Covariance analysis shows that isolation factor is positively correlated with both DDi and DD, suggesting that Idb can be considered as an ecological isolation factor. The effect of Idb varies with season and species. This effect is stronger in summer (May to November), than in winter (December to April), which appears to be more unstable. Species react differently to Idb, independently of season. A principal component analysis on the monthly (DDi) for the 12 islands and the 18 species, complemented by an agglomerative hierarchical clustering, shows a geographic pattern of island organization, according to Idb. Results indicate that the ecological structure of demersal fish communities of Cape Verde archipelago, both in time and space, can be explained by a geographic isolation factor. The analytical approach used here is promising and could be tested in other archipelago systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pattern of genetic variation of the lizard Mabuya maculilabris from São Tomé Island (Gulf of Guinea) was investigated using a combination of three mitochondrial DNA gene fragments. Forty-eight haplotypes were recovered among 66 individuals covering the whole island. The genealogy inferred from the most parsimonious network of haplotypes allows us to detect two main and long branches departing from the putative group of oldest haplotypes. The tips of these branches exhibit star-like phylogenies, which may indicate of recently expanded populations, most probably from a small number of founders. A nested clade analysis suggests a complex pattern of past events that gave rise to the extant geographical pattern found in the haplotype distribution: past and allopatric fragmentation, range expansion, restricted gene Xow and long-distance dispersal. These results are consistent with the complex geological history of the island where important volcanic activity with extensive lava Xows has occurred during several periods. Mismatch- distribution analysis and AMOVA also support these conclusions. Substantial genetic structuring among these lizards was detected as well as high levels of diVerentiation between the southern edge populations (particularly those from the Rolas Islet) and the remaining ones. However, variation is low relative to the geological age of the island. Our results indicate that patterns of variation observed in reptiles in other oceanic islands are not indicative of those observed in the islands of the Gulf of Guinea.