6 resultados para Water courses
em Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde
Resumo:
The archipelago of Cape Verde is made up of ten islands and nine islets and is located between latitudes 14º 28' N and 17º 12' N and longitudes 22º 40' W and 25º 22' W. It is located approximately 500 km from the Senegal coast in West Africa (Figure 1). The islands are divided into two groups: Windward and Leeward. The Windward group is composed of the islands of Santo Antão, São Vicente, Santa Luzia, São Nicolau, Sal and Boavista; and the Leeward group is composed of the islands Maio, Santiago, Fogo and Brava. The archipelago has a total land surface of 4,033 km2 and an Economic Exclusive Zone (ZEE) that extends for approximately 734,000 km2. In general, the relief is very steep, culminating with high elevations (e.g. 2,829 m on Fogo and 1,979 m on Santo Antão). The surface area, geophysical configuration and geology vary greatly from one island to the next. Cape Verde, due to its geomorphology, has a dense and complex hydrographical network. However, there are no permanent water courses and temporary water courses run only during the rainy season. These temporary water courses drain quickly towards the main watersheds, where, unless captured by artificial means, continue rapidly to lower areas and to the sea. This applies equally to the flatter islands. The largest watershed is Rabil with an area of 199.2 km2. The watershed areas on other islands extend over less than 70 km2. Cape Verde is both a least developed country (LDC) and a small island development state (SIDS). In 2002, the population of Cape Verde was estimated at approximately 451,000, of whom 52% were women and 48% men. The population was growing at an average 2.4% per year, and the urban population was estimated at 53.7 %. Over the past 15 years, the Government has implemented a successful development strategy, leading to a sustained economic growth anchored on development of the private sector and the integration of Cape Verde into the world economy. During this period, the tertiary sector has become increasingly important, with strong growth in the tourism, transport, banking and trade sectors. Overall, the quality of life indicators show substantial improvements in almost all areas: housing conditions, access to drinking water and sanitation, use of modern energy in both lighting and cooking, access to health services and education. Despite these overall socio-economic successes, the primary sector has witnessed limited progress. Weak performance in the primary sector has had a severe negative impact on the incomes and poverty risks faced by rural workers1. Moreover, relative poverty has increased significantly during the past decade. The poverty profile shows that: (i) extreme poverty is mostly found in rural areas, although it has also increased in urban areas; (ii) poverty is more likely to occur when the head of the household is a woman; (iii) poverty increases with family size; (iv) education significantly affects poverty; (v) the predominantly agricultural islands of Santo Antão and Fogo have the highest poverty rates; (vi) unemployment affects the poor more than the nonpoor; (vii) agriculture and fisheries workers are more likely to be poor than those in other sectors. Therefore, the fight against poverty and income inequalities remains one of the greatest challenges for Cape Verde authorities. The various governments of Cape Verde over the last decade have demonstrated a commitment to improving governance, notably by encouraging a democratic culture that guarantees stability and democratic changes without conflicts. This democratic governance offers a space for a wider participation of citizens in public management and consolidates social cohesion. However, there are some remaining challenges related to democratic governance and the gains must be systematically monitored. Finally, it is worth emphasizing that the country’s insularity has stimulated a movement to decentralized governance, although social inequalities and contrasts from one island to the next constitute, at the same time, challenges and opportunities.
Resumo:
Variation in temperature affects the biology of sea turtles at a range of scales. To elucidate the drivers of seasonality of nesting and duration of season, databases across four species of sea turtles (Caretta caretta n=37, Chelonia mydas n=64, Dermochelys coriacea n=44 and Eretmochelys imbricata n=36) at a global scale were created. By using remotely sensed sea surface temperature data, thermal profiles across the nesting season were generated. Duration of nesting season was correlated with latitude in all species but was more tightly coupled with temperature; seasons were significantly longer with increased mean SST. In general, nesting seasonality occurred at warmest time of the year. SST for the month before, month after and the month of peak nesting significantly affected the month of peak nesting.
Resumo:
Cape Verde, located off the coast of Senegal in western Africa, is a volcanic archipelago where a combination of human, climatic, geomorphologic and pedologic factors has led to extensive degradation of the soils. Like other Sahelian countries, Cape Verde has suffered the effects of desertification through the years, threatening the livelihood of the islands population and its fragile environment. In fact, the steep slopes in the ore agricultural islands, together with semi-arid and arid environments, characterized by an irregular and poorly distributed rainy season, with high intensity rainfall events, make dryland production a challenge. To survive in these fragile conditions, the stabilization of the farming systems and the maintenance of sustainable yields have become absolute priorities, making the islands an erosion control laboratory. Soil and water conservation strategies have been a centerpiece of the government0s agricultural policies for the last half century. Aiming to maintain the soil in place and the water inside the soil, the successive governments of Cape Verde have implemented a number of soil and water conservation techniques, the most common ones being terraces, half moons, live barriers, contour rock walls, contour furrows and microcatchments, check dams and reforestation with drought resistant species. The soil and water conservation techniques implemented have contributed to the improvement of the economical and environmental conditions of the treated landscape, making crop production possible, consequently, improving the livelihood of the people living on the islands. In this paper, we survey the existing soil and water conservation techniques, analyze their impact on the livelihood condition of the population through a thorough literature review and field monitoring using a semi-quantitative methodology and evaluate their effectiveness and impact on crop yield in the Ribeira Seca watershed. A brief discussion is given on the cost and effectiveness of the techniques to reduce soil erosion and to promote rainfall infiltration. Finally, we discuss the critical governance factors that lead to the successful implementation of such strategy in a country with scarce natural resources.
Resumo:
A localização geográfica do arquipélago de Cabo Verde na zona saheliana entre as isoietas de 250 mm e 500 mm aproximadamente, aliada aos condicionalismos físicos, climáticos e económicos explicam em grande parte, os escassos recursos hídricos disponíveis. Devido ao caracter torrencial das chuvas, os resultados de aplicação das diferentes técnicas e sistemas de “water harvesting”, provaram no passado de que se tratam de tecnologias que podem contribuir para uma melhor gestão dos recursos hídricos. Por esta razão, deverão continuar a fazer parte dos programas de investigação aplicada, aperfeiçoadas e divulgadas no seio das comunidades rurais e nas áreas urbanas devido ao baixo custo do preço da água captada e as vantagens de caracter ambiental. Este trabalho faz uma abordagem sobre as tecnologias de aproveitamento de águas superficiais, com destaque para os sistemas de “water harvesting”, e discute as potencialidades do seu desenvolvimento em Cabo Verde.
Resumo:
Severe land degradation has strongly affected both people’s livelihood and the environment in Cape Verde (Cabo Verde in Portuguese), a natural resource poor country. Despite the enormous investment in soil and water conservation measures (SWC or SLM), which are visible throughout the landscape, and the recognition of their benefits, their biophysical and socioeconomic impacts have been poorly assessed and scientifically documented. This paper contributes to filling this gap, by bringing together insights from literature and policy review, field survey and participatory assessment in the Ribeira Seca Watershed through a concerted approach devised by the DESIRE project (the “Desire approach”). Specifically, we analyze government strategies towards building resilience against the harsh conditions, analyze the state of land degradation and its drivers, survey and map the existing SWC measures, and assess their effectiveness against land degradation, on crop yield and people’s livelihood. We infer that the relative success of Cape Verde in tackling desertification and rural poverty owes to an integrated governance strategy that comprises raising awareness, institutional framework development, financial resource allocation, capacity building, and active participation of rural communities. We recommend that specific, scientific-based monitoring and assessment studies be carried out on the biophysical and socioeconomic impact of SLM and that the “Desire approach” be scaled-up to other watersheds in the country.
Resumo:
Purpose of the evaluation This is a scheduled standard mid-term evaluation (MTR) of a UNDP implemented GEF LDCF co-financed project. It is conducted by a team of an international and a national independent evaluator. The objective of the MTR, as set out in the Terms of Reference (TORs; Annex 1), is to provide an independent analysis of the progress of the project so far. The MTR aims to: identify potential project design problems, assess progress towards the achievement of the project objective and outcomes, identify and document lessons learned (including lessons that might improve design and implementation of other projects, including UNDP-GEF supported projects), and make recommendations regarding specific actions that should be taken to improve the project. The MTR is intended to assess signs of project success or failure and identify the necessary changes to be made. The project commenced its implementation in the first half of 2010 with the recruitment of project staff. According to the updated project plan, it is due to close in July 201410 with operations scaling down in December 2013 due to funding limits. Because of a slow implementation start, the mid-term evaluation was delayed to July 201311 The intended target audience of the evaluation are: The project team and decision makers in the INGRH The GEF and UNFCCC Operational Focal Points The project partners and beneficiaries UNDP in Cape Verde as well as the regional and headquarter (HQ) office levels The GEF Secretariat.