5 resultados para Surface-relief gratings
em Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde
Resumo:
We present a comparative analysis of satellite derived climatologies in the Cape Verde region (CV). In order to establish chlorophyll a variability, in relation to other oceanographic phenomena, a set of, relatively long (from five to eight years), time series of chlorophyll a, sea surface temperature, wind and geostrophic currents, were ensembled for the Eastern Central Atlantic (ECA). We studied seasonal and inter-annual variability of phytoplankton concentration, in relation to the rest of the variables, with a special focus in CV. We compared the situation within the archipelago with those of the surrounding marine environments, such as the North West African Upwelling (NWAU), North Atlantic Subtropical Gyre (NASTG), North Equatorial Counter Current (NECC) and Guinea Dome (GD). At the seasonal scale, CV region behaves partly as the surrounding areas, nevertheless, some autochthonous features were also found. The maximum peak of the pigment having a positive correlation with temperature is found at the end of the year for all the points in the archipelago; a less remarkable rise with negative correlation is also detected in February for points CV2 and CV4. This is behavior that none of the surrounding environments have shown. This enrichment was found to be preceded by a drastic drop in wind intensity (SW Monsoon) during summer months. The inter-annual analysis shows a tendency for decreasing of the chlorophyll a concentration.
Resumo:
We present a comparative analysis of satellite derived climatologies in the Cape Verde region (CV). In order to establish chlorophyll a variability, in relation to other oceanographic phenomena, a set of, relatively long (from five to eight years), time series of chlorophyll a, sea surface temperature, wind and geostrophic currents, were ensembled for the Eastern Central Atlantic (ECA). We studied seasonal and inter-annual variability of phytoplankton concentration, in relation to the rest of the variables, with a special focus in CV. We compared the situation within the archipelago with those of the surrounding marine environments, such as the North West African Upwelling (NWAU), North Atlantic Subtropical Gyre (NASTG), North Equatorial Counter Current (NECC) and Guinea Dome (GD). At the seasonal scale, CV region behaves partly as the surrounding areas, nevertheless, some autochthonous features were also found. The maximum peak of the pigment having a positive correlation with temperature is found at the end of the year for all the points in the archipelago; a less remarkable rise with negative correlation is also detected in February for points CV2 and CV4. This is behavior that none of the surrounding environments have shown. This enrichment was found to be preceded by a drastic drop in wind intensity (SW Monsoon) during summer months. The inter-annual analysis shows a tendency for decreasing of the chlorophyll a concentration.
Resumo:
Cape Verde, off the coast of Senegal in western Africa, is a volcanic archipelago where soil and water conservation techniques play an important role in the overall subsistence of half a million inhabitants. In fact, the step slopes in the more agricultural islands due to it's volcanic origin, together with semi-arid and arid environments (the country is located in the Sahelian region), characterized by a very irregular wet season, with high intensity rainfall events, make life tough. The hard conditions lead during the first half of the XX century to frequent cycles of drought with severe implications on the local populations, with impressive numbers of deaths by famine, and a decrease of the number of local inhabitants by more than halve in some islands. Maintain the soil in place and the water inside the soil was there after a mater of survival, and the CapeVerdians implemented over the last half century a number of soil and water conservation techniques that cover all the landscape. In this work, we monitored a number of slope soil and water conservation techniques, such as terraces, half moons, live barriers, etc, together with two cultural strategies, used to plant corn and beans on one side and peanuts on the other, with a semi-quantitative methodology, to evaluate their effectiveness. A discussion is given on the costs and effectiveness of the techniques to reduce overland flow production and therefore erosion, and to promote rainfall infiltration.
Resumo:
The archipelago of Cape Verde is made up of ten islands and nine islets and is located between latitudes 14º 28' N and 17º 12' N and longitudes 22º 40' W and 25º 22' W. It is located approximately 500 km from the Senegal coast in West Africa (Figure 1). The islands are divided into two groups: Windward and Leeward. The Windward group is composed of the islands of Santo Antão, São Vicente, Santa Luzia, São Nicolau, Sal and Boavista; and the Leeward group is composed of the islands Maio, Santiago, Fogo and Brava. The archipelago has a total land surface of 4,033 km2 and an Economic Exclusive Zone (ZEE) that extends for approximately 734,000 km2. In general, the relief is very steep, culminating with high elevations (e.g. 2,829 m on Fogo and 1,979 m on Santo Antão). The surface area, geophysical configuration and geology vary greatly from one island to the next. Cape Verde, due to its geomorphology, has a dense and complex hydrographical network. However, there are no permanent water courses and temporary water courses run only during the rainy season. These temporary water courses drain quickly towards the main watersheds, where, unless captured by artificial means, continue rapidly to lower areas and to the sea. This applies equally to the flatter islands. The largest watershed is Rabil with an area of 199.2 km2. The watershed areas on other islands extend over less than 70 km2. Cape Verde is both a least developed country (LDC) and a small island development state (SIDS). In 2002, the population of Cape Verde was estimated at approximately 451,000, of whom 52% were women and 48% men. The population was growing at an average 2.4% per year, and the urban population was estimated at 53.7 %. Over the past 15 years, the Government has implemented a successful development strategy, leading to a sustained economic growth anchored on development of the private sector and the integration of Cape Verde into the world economy. During this period, the tertiary sector has become increasingly important, with strong growth in the tourism, transport, banking and trade sectors. Overall, the quality of life indicators show substantial improvements in almost all areas: housing conditions, access to drinking water and sanitation, use of modern energy in both lighting and cooking, access to health services and education. Despite these overall socio-economic successes, the primary sector has witnessed limited progress. Weak performance in the primary sector has had a severe negative impact on the incomes and poverty risks faced by rural workers1. Moreover, relative poverty has increased significantly during the past decade. The poverty profile shows that: (i) extreme poverty is mostly found in rural areas, although it has also increased in urban areas; (ii) poverty is more likely to occur when the head of the household is a woman; (iii) poverty increases with family size; (iv) education significantly affects poverty; (v) the predominantly agricultural islands of Santo Antão and Fogo have the highest poverty rates; (vi) unemployment affects the poor more than the nonpoor; (vii) agriculture and fisheries workers are more likely to be poor than those in other sectors. Therefore, the fight against poverty and income inequalities remains one of the greatest challenges for Cape Verde authorities. The various governments of Cape Verde over the last decade have demonstrated a commitment to improving governance, notably by encouraging a democratic culture that guarantees stability and democratic changes without conflicts. This democratic governance offers a space for a wider participation of citizens in public management and consolidates social cohesion. However, there are some remaining challenges related to democratic governance and the gains must be systematically monitored. Finally, it is worth emphasizing that the country’s insularity has stimulated a movement to decentralized governance, although social inequalities and contrasts from one island to the next constitute, at the same time, challenges and opportunities.
Resumo:
Faced with recurrent drought and famine during five centuries of human occupation, the small and densely populated Cape Verde Islands have a history of severe environmental problems. The arid climate and steep, rocky terrain provide scant resources for traditional subsistance farming under the best conditions, and in years of low rainfall the failure of rainfed crops causes massive food shortages. Agricultural use of steep slopes where rainfall is highest has led to soil erosion, as has removal of the island's vegetation for fuel and livestock. Pressure on the vegetation is particularly severe in dry years. International aid can provide relief from famine, and the introduction of modern agricultural and conservation techniques can improve the land and increase yield, but it is unlikely that Cape Verde can ever be entirely self -sufficient in food. Ultimately, the solution of Cape Verde's economic and environmental problems will probably require the development of productive urban jobs so the population can shift away from the intensive and destructive use of land for subsistance farming. In the meantime, the people of Cape Verde can best be served by instituting fundamental measures to conserve and restore the land so that it can be used to its fullest potential. The primary environmental problems in Cape Verde today are: 1. Soil degradation. Encouraged by brief but heavy rains and steep slopes, soil erosion is made worse by lack of vegetation. Soils are also low in organic matter due to the practice of completely removing crop plants and natural vegetation for food, fuel or livestock feed. 2. Water shortage. Brief and erratic rainfall in combination with rapid runoff makes surface water scarce and difficult to use. Groundwater supplies can be better developed but capabilities are poorly known and the complex nature of the geological substrate makes estimation difficult. Water is the critical limiting factor to the agricultural capability of the islands. 3. Fuel shortage. Demand for fuel is intense and has resulted in the virtual elimination of native vegetation. Fuelwood supplies are becoming more and more scarce and costly. Development of managed fuelwood plantations and alternate energy sources is required. 4. Inappropriate land use. Much of the land now used for raising crops or livestock is too steep or too arid for these purposes, causing erosion and destruction of vegetation. Improving yield in more appropriate areas and encouraging less damaging uses of the remaining marginal lands can help to alleviate this problem.