1 resultado para 2-D Imaging
em Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde
Resumo:
This work aims the applicability of the Transient electromagnetic method at an arid and semiarid environmental condition in the Santiago Island – Cape Verde. Some seashore areas of this island show an increasing salt contamination of the groundwater. The main objective of present work is to relate this water-quality condition with parameters taken from the transient sounding’s data. In this context, transient soundings have been acquired from 2005 through 2009, at several chosen valleys near the sea, in a mean rate of one field campaign each year. The first phase of this work was the understanding of the geophysical method details, problems and applicability, as the chosen and acquired equipment was the first one to be permanently available to the Portuguese geosciences community. This first phase was also accomplished with field tests. Interpretation of the transient sounding’s data curves were done by application of 1-D inversion methods already developed and published, as also with quasi 2-D and quasi 3-D inversion algorithms, where applicability was feasible. This was the second phase. The 2-D and 3-D approximation results are satisfactory and promising; although a higher spatial sounding’s density should certainly allow for better results. At phase three, these results have been compared against the available lithologic, hydrologic and hydrochemical data, in the context of Santiago’s island settings. The analyses of these merged data showed that two distinct origins for the observed inland groundwater salinity are possible; seashore shallow mixing with contemporary seawater and mixing with a deep and older salty layer from up flow groundwater. Relations between the electric resistivity and the salt water content distribution were found for the surveyed areas. To this environment condition, the electromagnetic transient method proved to be a reliable and powerful technique. The groundwater quality can be accessed beyond the few available watershed points, which have an uneven distribution.