12 resultados para upwind compact difference schemes on non-uniform meshes

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-metallic implants made of bioresorbable or biostable synthetic polymers are attractive options in many surgical procedures, ranging from bioresorbable suture anchors of arthroscopic surgery to reconstructive skull implants made of biostable fiber-reinforced composites. Among other benefits, non-metallic implants produce less interference in imaging. Bioresorbable polymer implants may be true multifunctional, serving as osteoconductive scaffolds and as matrices for simultaneous delivery of bone enhancement agents. As a major advantage for loading conditions, mechanical properties of biostable fiber-reinforced composites can be matched with those of the bone. Unsolved problems of these biomaterials are related to the risk of staphylococcal biofilm infections and to the low osteoconductivity of contemporary bioresorbable composite implants. This thesis was focused on the research and development of a multifunctional implant model with enhanced osteoconductivity and low susceptibility to infection. In addition, the experimental models for assessment, diagnostics and prophylaxis of biomaterial-related infections were established. The first experiment (Study I) established an in vitro method for simultaneous evaluation of calcium phosphate and biofilm formation on bisphenol-Aglycidyldimethacrylate and triethylenglycoldimethacrylate (BisGMA-TEGDMA) thermosets with different content of bioactive glass 45S5. The second experiment (Study II) showed no significant difference in osteointegration of nanostructured and microsized polylactide-co-glycolide/β-tricalcium phosphate (PLGA /β-TCP) composites in a minipig model. The third experiment (Study III) demonstrated that positron emission tomography (PET) imaging with the novel 68Ga labelled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) CD33 related sialic-acid immunoglobulin like lectins (Siglec-9) tracer was able to detect inflammatory response to S. epidermidis and S. aureus peri-implant infections in an intraosseous polytetrafluoroethylene catheter model. In the fourth experiment (Study IV), BisGMATEGDMA thermosets coated with lactose-modified chitosan (Chitlac) and silver nanoparticles exhibited antibacterial activity against S. aureus and P. aeruginosa strains in an in vitro biofilm model and showed in vivo biocompatibility in a minipig model. In the last experiment (Study V), a selective androgen modulator (SARM) released from a poly(lactide)-co-ε-caprolactone (PLCL) polymer matrix failed to produce a dose-dependent enhancement of peri-implant osteogenesis in a bone marrow ablation model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical computation of a viscid heat-conducting transonic flow over a generic commercial rocket profile with symmetric oversized nose part was carried out. It has been shown that at zero angle of attack for some free-streamvelocity value flow pattern loses its symmetry. This results in non-uniform pressure distribution on rocket surface in angle direction which may yield in additional oscillating stress on the rocket. Also it has been found that obtained non-symmetric flow patterns are stable for small velocity perturbations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interferometer for low resolution portable Fourier Transform middle infrared spectrometer was developed and studied experimentally. The final aim was a concept for a commercial prototype. Because of the portability, the interferometer should be compact sized and insensitive to the external temperature variations and mechanical vibrations. To minimise the size and manufacturing costs, Michelson interferometer based on plane mirrors and porch swing bearing was selected and no dynamic alignment system was applied. The driving motor was a linear voice coil actuator to avoid mechanical contact of the moving parts. The driving capability for low mirror driving velocities required by the photoacoustic detectors was studied. In total, four versions of such an interferometer were built and experimentally studied. The thermal stability during the external temperature variations and the alignment stability over the mirror travel were measured using the modulation depth of the wide diameter laser beam. Method for estimating the mirror tilt angle from the modulation depth was developed to take account the effect from the non-uniform intensity distribution of the laser beam. The spectrometer stability was finally studied also using the infrared radiation. The latest interferometer was assembled for the middle infrared spectrometer with spectral range from 750 cm−1 to 4500 cm−1. The interferometer size was (197 × 95 × 79) mm3 with the beam diameter of 25 mm. The alignment stability as the change of the tilt angle over the mirror travel of 3 mm was 5 μrad, which decreases the modulation depth only about 0.7 percent in infrared at 3000 cm−1. During the temperature raise, the modulation depth at 3000 cm−1 changed about 1 . . . 2 percentage units per Celsius over short term and even less than 0.2 percentage units per Celsius over the total temperature raise of 30 °C. The unapodised spectral resolution was 4 cm−1 limited by the aperture size. The best achieved signal to noise ratio was about 38 000:1 with commercially available DLaTGS detector. Although the vibration sensitivity requires still improving, the interferometer performed, as a whole, very well and could be further developed to conform all the requirements of the portable and stable spectrometer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the feasibility of the floating-gate technology in analog computing platforms in a scaled down general-purpose CMOS technology is considered. When the technology is scaled down the performance of analog circuits tends to get worse because the process parameters are optimized for digital transistors and the scaling involves the reduction of supply voltages. Generally, the challenge in analog circuit design is that all salient design metrics such as power, area, bandwidth and accuracy are interrelated. Furthermore, poor flexibility, i.e. lack of reconfigurability, the reuse of IP etc., can be considered the most severe weakness of analog hardware. On this account, digital calibration schemes are often required for improved performance or yield enhancement, whereas high flexibility/reconfigurability can not be easily achieved. Here, it is discussed whether it is possible to work around these obstacles by using floating-gate transistors (FGTs), and analyze problems associated with the practical implementation. FGT technology is attractive because it is electrically programmable and also features a charge-based built-in non-volatile memory. Apart from being ideal for canceling the circuit non-idealities due to process variations, the FGTs can also be used as computational or adaptive elements in analog circuits. The nominal gate oxide thickness in the deep sub-micron (DSM) processes is too thin to support robust charge retention and consequently the FGT becomes leaky. In principle, non-leaky FGTs can be implemented in a scaled down process without any special masks by using “double”-oxide transistors intended for providing devices that operate with higher supply voltages than general purpose devices. However, in practice the technology scaling poses several challenges which are addressed in this thesis. To provide a sufficiently wide-ranging survey, six prototype chips with varying complexity were implemented in four different DSM process nodes and investigated from this perspective. The focus is on non-leaky FGTs, but the presented autozeroing floating-gate amplifier (AFGA) demonstrates that leaky FGTs may also find a use. The simplest test structures contain only a few transistors, whereas the most complex experimental chip is an implementation of a spiking neural network (SNN) which comprises thousands of active and passive devices. More precisely, it is a fully connected (256 FGT synapses) two-layer spiking neural network (SNN), where the adaptive properties of FGT are taken advantage of. A compact realization of Spike Timing Dependent Plasticity (STDP) within the SNN is one of the key contributions of this thesis. Finally, the considerations in this thesis extend beyond CMOS to emerging nanodevices. To this end, one promising emerging nanoscale circuit element - memristor - is reviewed and its applicability for analog processing is considered. Furthermore, it is discussed how the FGT technology can be used to prototype computation paradigms compatible with these emerging two-terminal nanoscale devices in a mature and widely available CMOS technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a centrifugal compressor the flow around the diffuser is collected and led to the pipe system by a spiral-shaped volute. In this study a single-stage centrifugal compressor with three different volutes is investigated. The compressorwas first equipped with the original volute, the cross-section of which was a combination of a rectangle and semi-circle. Next a new volute with a fully circular cross-section was designed and manufactured. Finally, the circular volute wasmodified by rounding the tongue and smoothing the tongue area. The overall performance of the compressor as well as the static pressure distribution after the impeller and on the volute surface were measured. The flow entering the volute was measured using a three-hole Cobra-probe, and flow visualisations were carriedout in the exit cone of the volute. In addition, the radial force acting on theimpeller was measured using magnetic bearings. The complete compressor with thecircular volute (inlet pipe, full impeller, diffuser, volute and outlet pipe) was also modelled using computational fluid dynamics (CFD). A fully 3-D viscous flow was solved using a Navier-Stokes solver, Finflo, developed at Helsinki University of Technology. Chien's k-e model was used to take account of the turbulence. The differences observed in the performance of the different volutes were quite small. The biggest differences were at low speeds and high volume flows,i.e. when the flow entered the volute most radially. In this operating regime the efficiency of the compressor with the modified circular volute was about two percentage points higher than with the other volutes. Also, according to the Cobra-probe measurements and flow visualisations, the modified circular volute performed better than the other volutes in this operating area. The circumferential static pressure distribution in the volute showed increases at low flow, constant distribution at the design flow and decrease at high flow. The non-uniform static pressure distribution of the volute was transmitted backwards across the vaneless diffuser and observed at the impeller exit. At low volume flow a strong two-wave pattern developed into the static pressure distribution at the impeller exit due to the response of the impeller to the non-uniformity of pressure. The radial force of the impeller was the greatest at the choke limit, the smallest atthe design flow, and moderate at low flow. At low flow the force increase was quite mild, whereas the increase at high flow was rapid. Thus, the non-uniformityof pressure and the force related to it are strong especially at high flow. Theforce caused by the modified circular volute was weaker at choke and more symmetric as a function of the volume flow than the force caused by the other volutes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this thesis is to implement software for creating 3D models from point clouds. Point clouds are acquired with stereo cameras, monocular systems or laser scanners. The created 3D models are triangular models or NURBS (Non-Uniform Rational B-Splines) models. Triangular models are constructed from selected areas from the point clouds and resulted triangular models are translated into a set of quads. The quads are further translated into an estimated grid structure and used for NURBS surface approximation. Finally, we have a set of NURBS surfaces which represent the whole model. The problem wasn’t so easy to solve. The selected triangular surface reconstruction algorithm did not deal well with noise in point clouds. To handle this problem, a clustering method is introduced for simplificating the model and removing noise. As we had better results with the smaller point clouds produced by clustering, we used points in clusters to better estimate the grids for NURBS models. The overall results were good when the point cloud did not have much noise. The point clouds with small amount of error had good results as the triangular model was solid. NURBS surface reconstruction performed well on solid models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Print quality and the printability of paper are very important attributes when modern printing applications are considered. In prints containing images, high print quality is a basic requirement. Tone unevenness and non uniform glossiness of printed products are the most disturbing factors influencing overall print quality. These defects are caused by non ideal interactions of paper, ink and printing devices in high speed printing processes. Since print quality is a perceptive characteristic, the measurement of unevenness according to human vision is a significant problem. In this thesis, the mottling phenomenon is studied. Mottling is a printing defect characterized by a spotty, non uniform appearance in solid printed areas. Print mottle is usually the result of uneven ink lay down or non uniform ink absorption across the paper surface, especially visible in mid tone imagery or areas of uniform color, such as solids and continuous tone screen builds. By using existing knowledge on visual perception and known methods to quantify print tone variation, a new method for print unevenness evaluation is introduced. The method is compared to previous results in the field and is supported by psychometric experiments. Pilot studies are made to estimate the effect of optical paper characteristics prior to printing, on the unevenness of the printed area after printing. Instrumental methods for print unevenness evaluation have been compared and the results of the comparison indicate that the proposed method produces better results in terms of visual evaluation correspondence. The method has been successfully implemented as ail industrial application and is proved to be a reliable substitute to visual expertise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ambitious energy targets set by EU put pressures to increase share of renewable electricity supply in this and next decades and therefore, some EU member countries have boosted increasing renewable energy generation capacity by implementing subsidy schemes on national level. In this study, two different change approaches to increase renewable energy supply and increase self-sufficiency of supply are assessed with respect to their impacts on power system, electricity market and electricity generation costs in Finland. It is obtained that the current electricity generation costs are high compared to opportunities of earnings from present-day investor’s perspective. In addition, the growth expectations of consumptions and the price forecasts do not stimulate investing in new generation capacity. Revolutionary transition path is driven by administrative and political interventions to achieve the energy targets. Evolutionary transition path is driven by market-based mechanisms, such as market itself and emission trading scheme. It is obtained in this study that in the revolutionary transition path operation of market-based mechanisms is distorted to some extent and it is likely that this path requires providing more public financial resources compared to evolutionary transition path. In the evolutionary transition path the energy targets are not achieved as quickly but market-based mechanisms function better and investment environment endures more stable compared to revolutionary transition path.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is made in cooperation with Laboratory of Steel Structures and the steel company SSAB. Maximization of the benefits of high-strength steel usually requires the usage of thin wall thicknesses. This means the failures related to buckling, distortion and warping stand out. One must be aware of these phenomena to design thin-walled structures stressed with forces such as torsional loading. It is also important to take into account small stress ranges when evaluating the accurate fatigue strength of structures. The objective of this thesis is to clarify the theory of the uniform and non-uniform torsion. This paper focuses on warping due to the non-uniform torsion in double symmetric box girder and structural hollow section. The arisen stress states are explained and researched using the finite element method. Another research target is the distortion in double symmetric box girder due to torsion, and the restraining effect of transverse diaphragms at the load end. Multiple transverse diaphragms are used to study more efficient restraining against warping and distortion than a common one end plate structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99% with half the output rate as a bus-based system. The network-based solution avoids “broken” columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of > 10% to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling (TLM) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of > 10 in run-time is observed using these techniques compared to register transfer level (RTL) design technique. Reduction of 50% for lines-of-code (LoC) for the high-level models compared to the RTL description has been achieved. Two architectures are then demonstrated in two hybrid pixel readout chips. The first chip, Timepix3 has been designed for the Medipix3 collaboration. According to the measurements, it consumes < 1 W/cm^2. It also delivers up to 40 Mhits/s/cm^2 with 10-bit time-over-threshold (ToT) and 18-bit time-of-arrival (ToA) of 1.5625 ns. The chip uses a token-arbitrated, asynchronous two-phase handshake column bus for internal data transfer. It has also been successfully used in a multi-chip particle tracking telescope. The second chip, VeloPix, is a readout chip being designed for the upgrade of Vertex Locator (VELO) of the LHCb experiment at CERN. Based on the simulations, it consumes < 1.5 W/cm^2 while delivering up to 320 Mpackets/s/cm^2, each packet containing up to 8 pixels. VeloPix uses a node-based data fabric for achieving throughput of 13.3 Mpackets/s from the column to the EoC. By combining Monte Carlo physics data with high-level simulations, it has been demonstrated that the architecture meets requirements of the VELO (260 Mpackets/s/cm^2 with efficiency of 99%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diplomityössä tutkittiin höyryturbiinin ulosvirtauskanavistojen kokeellisia tutkimusmenetelmiä ja suoritettiin käytännön mittauksia Fortum Oyj:n Loviisan ydinvoimalaitoksen höyryturbiinien huuvan pienoismallilla. Kirjallisuusselvityksen perusteella todettiin, että pienoismallitutkimuksella on ollut keskeinen asema ulosvirtauskanavistojen suunnittelussa. Kokeellisten menetelmien perusongelmana on höyryturbiinin ulosvirtausolosuhteiden jäljitteleminen. Käytetyt mittausmenetelmät perustuvat pääosin tavanomaisiin paine- ja nopeusmittauksiin. Lisäainepartikkeleihin ja laser-valaisuun perustuva PIV (particle image velocimetry) todettiin lupaavaksi menetelmäksi ulosvirtauskanavistojen tutkimuksen saralla. Työn käytännön osuudessa tehtiin mittauksia mittasuhteessa 1:8 rakennetulle höyryturbiinin huuvan pienoismallille. Mittauksilla tutkittiin virtausta mallin sisääntulo- ja ulostulotasoissa. Lisäksi mitattiin staattisen paineen jakauma huuvan sisällä. Kokonaispainetta mittaava kiel-putki todettiin käytännölliseksi työkaluksi huuvan virtauskentän tutkimuksessa. Tuloksista käy hyvin ilmi huuvan ulostuloon syntyvien pyörteiden muodostuminen ja ulostulon epätasainen nopeusjakauma. Staattinen paine huuvan sisällä havaittiin epätasaisesti jakautuneeksi. Ulostulotason ja staattisen paineen mittauksilla saadut tulokset sopivat hyvin yhteen kirjallisuudesta löytyvien tutkimustulosten kanssa ja tukevat Loviisan ulosvirtauskanavistosta aiemmin tehtyjä CFD-simulointeja.