17 resultados para ultrasound extraction
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Selostus: Alumiini- ja rautaoksidien fosforikyllästysasteen arvioiminen suomalaisista peltomaista
Resumo:
Tässä diplomityössä tutkitaan tekniikoita, joillavesileima lisätään spektrikuvaan, ja menetelmiä, joilla vesileimat tunnistetaanja havaitaan spektrikuvista. PCA (Principal Component Analysis) -algoritmia käyttäen alkuperäisten kuvien spektriulottuvuutta vähennettiin. Vesileiman lisääminen spektrikuvaan suoritettiin muunnosavaruudessa. Ehdotetun mallin mukaisesti muunnosavaruuden komponentti korvattiin vesileiman ja toisen muunnosavaruuden komponentin lineaarikombinaatiolla. Lisäyksessä käytettävää parametrijoukkoa tutkittiin. Vesileimattujen kuvien laatu mitattiin ja analysoitiin. Suositukset vesileiman lisäykseen esitettiin. Useita menetelmiä käytettiin vesileimojen tunnistamiseen ja tunnistamisen tulokset analysoitiin. Vesileimojen kyky sietää erilaisia hyökkäyksiä tarkistettiin. Diplomityössä suoritettiin joukko havaitsemis-kokeita ottamalla huomioon vesileiman lisäyksessä käytetyt parametrit. ICA (Independent Component Analysis) -menetelmää pidetään yhtenä mahdollisena vaihtoehtona vesileiman havaitsemisessa.
Resumo:
Perceiving the world visually is a basic act for humans, but for computers it is still an unsolved problem. The variability present innatural environments is an obstacle for effective computer vision. The goal of invariant object recognition is to recognise objects in a digital image despite variations in, for example, pose, lighting or occlusion. In this study, invariant object recognition is considered from the viewpoint of feature extraction. Thedifferences between local and global features are studied with emphasis on Hough transform and Gabor filtering based feature extraction. The methods are examined with respect to four capabilities: generality, invariance, stability, and efficiency. Invariant features are presented using both Hough transform and Gabor filtering. A modified Hough transform technique is also presented where the distortion tolerance is increased by incorporating local information. In addition, methods for decreasing the computational costs of the Hough transform employing parallel processing and local information are introduced.
Resumo:
In this study we used market settlement prices of European call options on stock index futures to extract implied probability distribution function (PDF). The method used produces a PDF of returns of an underlying asset at expiration date from implied volatility smile. With this method, the assumption of lognormal distribution (Black-Scholes model) is tested. The market view of the asset price dynamics can then be used for various purposes (hedging, speculation). We used the so called smoothing approach for implied PDF extraction presented by Shimko (1993). In our analysis we obtained implied volatility smiles from index futures markets (S&P 500 and DAX indices) and standardized them. The method introduced by Breeden and Litzenberger (1978) was then used on PDF extraction. The results show significant deviations from the assumption of lognormal returns for S&P500 options while DAX options mostly fit the lognormal distribution. A deviant subjective view of PDF can be used to form a strategy as discussed in the last section.
Resumo:
The amphiphilic nature of metal extractants causes the formation of micelles and other microscopic aggregates when in contact with water and an organic diluent. These phenomena and their effects on metal extraction were studied using carboxylic acid (Versatic 10) and organophosphorus acid (Cyanex 272) based extractants. Special emphasis was laid on the study of phase behaviour in a pre neutralisation stage when the extractant is transformed to a sodium or ammonium salt form. The pre neutralised extractants were used to extract nickel and to separate cobalt and nickel. Phase diagrams corresponding to the pre neutralisation stage in a metal extraction process were determined. The maximal solubilisation of the components in the system water(NH3)/extractant/isooctane takes place when the molar ratio between the ammonia salt form and the free form of the extractant is 0.5 for the carboxylic acid and 1 for the organophosphorus acid extractant. These values correspond to the complex stoichiometry of NH4A•HA and NIi4A, respectively. When such a solution is contacted with water a microemulsion is formed. If the aqueous phase contains also metal ions (e.g. Ni²+), complexation will take place on the microscopic interface of the micellar aggregates. Experimental evidence showing that the initial stage of nickel extraction with pre neutralised Versatic 10 is a fast pseudohomogeneous reaction was obtained. About 90% of the metal were extracted in the first 15 s after the initial contact. For nickel extraction with pre neutralised Versatic 10 it was found that the highest metal loading and the lowest residual ammonia and water contents in the organic phase are achieved when the feeds are balanced so that the stoichiometry is 2NH4+(org) = Nit2+(aq). In the case of Co/Ni separation using pre neutralised Cyanex 272 the highest separation is achieved when the Co/extractant molar ratio in the feeds is 1 : 4 and at the same time the optimal degree of neutralisation of the Cyanex 272 is about 50%. The adsorption of the extractants on solid surfaces may cause accumulation of solid fine particles at the interface between the aqueous and organic phases in metal extraction processes. Copper extraction processes are known to suffer of this problem. Experiments were carried out using model silica and mica particles. It was found that high copper loading, aromacity of the diluent, modification agents and the presence of aqueous phase decrease the adsorption of the hydroxyoxime on silica surfaces.
Resumo:
Liquid-liquid extraction is a mass transfer process for recovering the desired components from the liquid streams by contacting it to non-soluble liquid solvent. Literature part of this thesis deals with theory of the liquid-liquid extraction and the main steps of the extraction process design. The experimental part of this thesis investigates the extraction of organic acids from aqueous solution. The aim was to find the optimal solvent for recovering the organic acids from aqueous solutions. The other objective was to test the selected solvent in pilot scale with packed column and compare the effectiveness of the structured and the random packing, the effect of dispersed phase selection and the effect of packing material wettability properties. Experiments showed that selected solvent works well with dilute organic acid solutions. The random packing proved to be more efficient than the structured packing due to higher hold-up of the dispersed phase. Dispersing the phase that is present in larger volume proved to more efficient. With the random packing the material that was wetted by the dispersed phase was more efficient due to higher hold-up of the dispersed phase. According the literature, the behavior is usually opposite.
Resumo:
There are several filtration applications in the pulp and paper industry where the capacity and cost-effectiveness of processes are of importance. Ultrafiltration is used to clean process water. Ultrafiltration is a membrane process that separates a certain component or compound from a liquid stream. The pressure difference across the membrane sieves macromolecules smaller than 0.001-0.02 μm through the membrane. When optimizing the filtration process capacity, online information about the conditions of the membrane is needed. Fouling and compaction of the membrane both affect the capacity of the filtration process. In fouling a “cake” layer starts to build on the surface of the membrane. This layer blocks the molecules from sieving through the membrane thereby decreasing the yield of the process. In compaction of the membrane the structure is flattened out because of the high pressure applied. The higher pressure increases the capacity but may damage the structure of the membrane permanently. Information about the compaction is needed to effectively operate the filters. The objective of this study was to develop an accurate system for online monitoring of the condition of the membrane using ultrasound reflectometry. Measurements of ultrafiltration membrane compaction were made successfully utilizing ultrasound. The results were confirmed by permeate flux decline, measurements of compaction with a micrometer, mechanical compaction using a hydraulic piston and a scanning electron microscope (SEM). The scientific contribution of this thesis is to introduce a secondary ultrasound transducer to determine the speed of sound in the fluid used. The speed of sound is highly dependent on the temperature and pressure used in the filters. When the exact speed of sound is obtained by the reference transducer, the effect of temperature and pressure is eliminated. This speed is then used to calculate the distances with a higher accuracy. As the accuracy or the resolution of the ultrasound measurement is increased, the method can be applied to a higher amount of applications especially for processes where fouling layers are thinner because of smaller macromolecules. With the help of the transducer, membrane compaction of 13 μm was measured in the pressure of 5 bars. The results were verified with the permeate flux decline, which indicated that compaction had taken place. The measurements of compaction with a micrometer showed compaction of 23–26 μm. The results are in the same range and confirm the compaction. Mechanical compaction measurements were made using a hydraulic piston, and the result was the same 13 μm as obtained by applying the ultrasound time domain reflectometry (UTDR). A scanning electron microscope (SEM) was used to study the structure of the samples before and after the compaction.
Resumo:
Separation of carboxylic acids from aqueous streams is an important part of their manufacturing process. The aqueous solutions are usually dilute containing less than 10 % acids. Separation by distillation is difficult as the boiling points of acids are only marginally higher than that of water. Because of this distillation is not only difficult but also expensive due to the evaporation of large amounts of water. Carboxylic acids have traditionally been precipitated as calcium salts. The yields of these processes are usually relatively low and the chemical costs high. Especially the decomposition of calcium salts with sulfuric acid produces large amounts of calcium sulfate sludge. Solvent extraction has been studied as an alternative method for recovery of carboxylic acids. Solvent extraction is based on mixing of two immiscible liquids and the transfer of the wanted components form one liquid to another due to equilibrium difference. In the case of carboxylic acids, the acids are transferred from aqueous phase to organic solvent due to physical and chemical interactions. The acids and the extractant form complexes which are soluble in the organic phase. The extraction efficiency is affected by many factors, for instance initial acid concentration, type and concentration of the extractant, pH, temperature and extraction time. In this paper, the effects of initial acid concentration, type of extractant and temperature on extraction efficiency were studied. As carboxylic acids are usually the products of the processes, they are wanted to be recovered. Hence the acids have to be removed from the organic phase after the extraction. The removal of acids from the organic phase also regenerates the extractant which can be then recycled in the process. The regeneration of the extractant was studied by back-extracting i.e. stripping the acids form the organic solution into diluent sodium hydroxide solution. In the solvent regeneration, the regenerability of different extractants and the effect of initial acid concentration and temperature were studied.
Resumo:
The major type of non-cellulosic polysaccharides (hemicelluloses) in softwoods, the partly acetylated galactoglucomannans (GGMs), which comprise about 15% of spruce wood, have attracted growing interest because of their potential to become high-value products with applications in many areas. The main objective of this work was to explore the possibilities to extract galactoglucomannans in native, polymeric form in high yield from spruce wood with pressurised hot-water, and to obtain a deeper understanding of the process chemistry involved. Spruce (Picea abies) chips and ground wood particles were extracted using an accelerated solvent extractor (ASE) in the temperature range 160 – 180°C. Detailed chemical analyses were done on both the water extracts and the wood residues. As much as 80 – 90% of the GGMs in spruce wood, i.e. about 13% based on the original wood, could be extracted from ground spruce wood with pure water at 170 – 180°C with an extraction time of 60 min. GGMs comprised about 75% of the extracted carbohydrates and about 60% of the total dissolved solids. Other substances in the water extracts were xylans, arabinogalactans, pectins, lignin and acetic acid. The yields from chips were only about 60% of that from ground wood. Both the GGMs and other non-cellulosic polysaccharides were extensively hydrolysed at severe extraction conditions when pH dropped to the level of 3.5. Addition of sodium bicarbonate increased the yields of polymeric GGMs at low additions, 2.5 – 5 mM, where the end pH remained around 3.9. However, at higher addition levels the yields decreased, mainly because the acetyl groups in GGMs were split off, leading to a low solubility of GGMs. Extraction with buffered water in the pH range 3.8 – 4.4 gave similar yields as with plain water, but gave a higher yield of polymeric GGMs. Moreover, at these pH levels the hydrolysis of acetyl groups in GGMs was significantly inhibited. It was concluded that hot-water extraction of polymeric GGMs in good yields (up to 8% of wood) demands appropriate control of pH, in a narrow range about 4. These results were supported by a study of hydrolysis of GGM at constant pH in the range of 3.8 – 4.2 where a kinetic model for degradation of GGM was developed. The influence of wood particle size on hot-water extraction was studied with particles in the range of 0.1 – 2 mm. The smallest particles (< 0.1 mm) gave 20 – 40% higher total yield than the coarsest particles (1.25 – 2 mm). The difference was greatest at short extraction times. The results indicated that extraction of GGMs and other polysaccharides is limited mainly by the mass transfer in the fibre wall, and for coarse wood particles also in the wood matrix. Spruce sapwood, heartwood and thermomechnical pulp were also compared, but only small differences in yields and composition of extracts were found. Two methods for isolation and purification of polymeric GGMs, i.e. membrane filtration and precipitation in ethanol-water, were compared. Filtration through a series of membranes with different pore sizes separated GGMs of different molar masses, from polymers to oligomers. Polysaccharides with molar mass higher than 4 kDa were precipitated in ethanol-water. GGMs comprised about 80% of the precipitated polysaccharides. Other polysaccharides were mainly arabinoglucuronoxylans and pectins. The ethanol-precipitated GGMs were by 13C NMR spectroscopy verified to be very similar to GGMs extracted from spruce wood in low yield at a much lower temperature, 90°C. The obtained large body of experimental data could be utilised for further kinetic and economic calculations to optimise technical hot-water extractionof softwoods.
Resumo:
Biomedical natural language processing (BioNLP) is a subfield of natural language processing, an area of computational linguistics concerned with developing programs that work with natural language: written texts and speech. Biomedical relation extraction concerns the detection of semantic relations such as protein-protein interactions (PPI) from scientific texts. The aim is to enhance information retrieval by detecting relations between concepts, not just individual concepts as with a keyword search. In recent years, events have been proposed as a more detailed alternative for simple pairwise PPI relations. Events provide a systematic, structural representation for annotating the content of natural language texts. Events are characterized by annotated trigger words, directed and typed arguments and the ability to nest other events. For example, the sentence “Protein A causes protein B to bind protein C” can be annotated with the nested event structure CAUSE(A, BIND(B, C)). Converted to such formal representations, the information of natural language texts can be used by computational applications. Biomedical event annotations were introduced by the BioInfer and GENIA corpora, and event extraction was popularized by the BioNLP'09 Shared Task on Event Extraction. In this thesis we present a method for automated event extraction, implemented as the Turku Event Extraction System (TEES). A unified graph format is defined for representing event annotations and the problem of extracting complex event structures is decomposed into a number of independent classification tasks. These classification tasks are solved using SVM and RLS classifiers, utilizing rich feature representations built from full dependency parsing. Building on earlier work on pairwise relation extraction and using a generalized graph representation, the resulting TEES system is capable of detecting binary relations as well as complex event structures. We show that this event extraction system has good performance, reaching the first place in the BioNLP'09 Shared Task on Event Extraction. Subsequently, TEES has achieved several first ranks in the BioNLP'11 and BioNLP'13 Shared Tasks, as well as shown competitive performance in the binary relation Drug-Drug Interaction Extraction 2011 and 2013 shared tasks. The Turku Event Extraction System is published as a freely available open-source project, documenting the research in detail as well as making the method available for practical applications. In particular, in this thesis we describe the application of the event extraction method to PubMed-scale text mining, showing how the developed approach not only shows good performance, but is generalizable and applicable to large-scale real-world text mining projects. Finally, we discuss related literature, summarize the contributions of the work and present some thoughts on future directions for biomedical event extraction. This thesis includes and builds on six original research publications. The first of these introduces the analysis of dependency parses that leads to development of TEES. The entries in the three BioNLP Shared Tasks, as well as in the DDIExtraction 2011 task are covered in four publications, and the sixth one demonstrates the application of the system to PubMed-scale text mining.
Resumo:
The purpose of this work is to obtain a better understanding of behaviour of possible ultrasound appliance on fluid media mixing. The research is done in the regard to Newtonian and non-Newtonian fluids. The process of ultrasound appliance on liquids is modelled in COMSOL Multiphysics software. The influence of ultrasound using is introduced as waveform equation. Turbulence modelling is fulfilled by the k-ε model in Newtonian fluid. The modeling of ultrasound assisted mixing in non-Newtonian fluids is based on the power law. To verify modelling results two practical methods are used: Particle Image Velocimetry and measurements of mixing time. Particle Image Velocimetry allows capturing of velocity flow field continuously and presents detailed depiction of liquid dynamics. The second way of verification is the comparison of mixing time of homogeneity. Experimentally achievement of mixing time is done by conductivity measurements. In modelling part mixing time is achieved by special module of COMSOL Multiphysics – the transport of diluted species. Both practical and modelling parts show similar radial mechanism of fluid flow under ultrasound appliance – from the horn tip fluid moves to the bottom and along the walls goes back. Velocity profiles are similar in modelling and experimental part in the case of Newtonian fluid. In the case of non-Newtonian fluid velocity profiles do not agree. The development track of ultrasound-assisted mixing modelling is presented in the thesis.
Resumo:
Effective processes to fractionate the main compounds in biomass, such as wood, are a prerequisite for an effective biorefinery. Water is environmentally friendly and widely used in industry, which makes it a potential solvent also for forest biomass. At elevated temperatures over 100 °C, water can readily hydrolyse and dissolve hemicelluloses from biomass. In this work, birch sawdust was extracted using pressurized hot water (PHWE) flow-through systems. The hypothesis of the work was that it is possible to obtain polymeric, water-soluble hemicelluloses from birch sawdust using flow-through PHW extractions at both laboratory and large scale. Different extraction temperatures in the range 140–200 °C were evaluated to see the effect of temperature to the xylan yield. The yields and extracted hemicelluloses were analysed to obtain sugar ratios, the amount of acetyl groups, furfurals and the xylan yields. Higher extraction temperatures increased the xylan yield, but decreased the molar mass of the dissolved xylan. As the extraction temperature increased, more acetic acid was released from the hemicelluloses, thus further decreasing the pH of the extract. There were only trace amounts of furfurals present after the extractions, indicating that the treatment was mild enough not to degrade the sugars further. The sawdust extraction density was increased by packing more sawdust in the laboratory scale extraction vessel. The aim was to obtain extracts with higher concentration than in typical extraction densities. The extraction times and water flow rates were kept constant during these extractions. The higher sawdust packing degree decreased the water use in the extractions and the extracts had higher hemicellulose concentrations than extractions with lower sawdust degrees of packing. The molar masses of the hemicelluloses were similar in higher packing degrees and in the degrees of packing that were used in typical PHWE flow-through extractions. The structure of extracted sawdust was investigated using small angle-(SAXS) and wide angle (WAXS) x-ray scattering. The cell wall topography of birch sawdust and extracted sawdust was compared using x-ray tomography. The results showed that the structure of the cell walls of extracted birch sawdust was preserved but the cell walls were thinner after the extractions. Larger pores were opened inside the fibres and cellulose microfibrils were more tightly packed after the extraction. Acetate buffers were used to control the pH of the extracts during the extractions. The pH control prevented excessive xylan hydrolysis and increased the molar masses of the extracted xylans. The yields of buffered extractions were lower than for plain water extractions at 160–170 °C, but at 180 °C yields were similar to those from plain water and pH buffers. The pH can thus be controlled during extraction with acetate buffer to obtain xylan with higher molar mass than those obtainable using plain water. Birch sawdust was extracted both in the laboratory and pilot scale. The performance of the PHWE flow-through system was evaluated in the laboratory and the pilot scale using vessels with the same shape but different volumes, with the same relative water flow through the sawdust bed, and in the same extraction temperature. Pre-steaming improved the extraction efficiency and the water flow through the sawdust bed. The extracted birch sawdust and the extracted xylan were similar in both laboratory and pilot scale. The PHWE system was successfully scaled up by a factor of 6000 from the laboratory to pilot scale and extractions performed equally well in both scales. The results show that a flow-through system can be further scaled up and used to extract water-soluble xylans from birch sawdust. Extracted xylans can be concentrated, purified, and then used in e.g. films and barriers, or as building blocks for novel material applications.
Resumo:
The growing population on earth along with diminishing fossil deposits and the climate change debate calls out for a better utilization of renewable, bio-based materials. In a biorefinery perspective, the renewable biomass is converted into many different products such as fuels, chemicals, and materials, quite similar to the petroleum refinery industry. Since forests cover about one third of the land surface on earth, ligno-cellulosic biomass is the most abundant renewable resource available. The natural first step in a biorefinery is separation and isolation of the different compounds the biomass is comprised of. The major components in wood are cellulose, hemicellulose, and lignin, all of which can be made into various end-products. Today, focus normally lies on utilizing only one component, e.g., the cellulose in the Kraft pulping process. It would be highly desirable to utilize all the different compounds, both from an economical and environmental point of view. The separation process should therefore be optimized. Hemicelluloses can partly be extracted with hot-water prior to pulping. Depending in the severity of the extraction, the hemicelluloses are degraded to various degrees. In order to be able to choose from a variety of different end-products, the hemicelluloses should be as intact as possible after the extraction. The main focus of this work has been on preserving the hemicellulose molar mass throughout the extraction at a high yield by actively controlling the extraction pH at the high temperatures used. Since it has not been possible to measure pH during an extraction due to the high temperatures, the extraction pH has remained a “black box”. Therefore, a high-temperature in-line pH measuring system was developed, validated, and tested for hot-water wood extractions. One crucial step in the measurements is calibration, therefore extensive efforts was put on developing a reliable calibration procedure. Initial extractions with wood showed that the actual extraction pH was ~0.35 pH units higher than previously believed. The measuring system was also equipped with a controller connected to a pump. With this addition it was possible to control the extraction to any desired pH set point. When the pH dropped below the set point, the controller started pumping in alkali and by that the desired set point was maintained very accurately. Analyses of the extracted hemicelluloses showed that less hemicelluloses were extracted at higher pH but with a higher molar-mass. Monomer formation could, at a certain pH level, be completely inhibited. Increasing the temperature, but maintaining a specific pH set point, would speed up the extraction without degrading the molar-mass of the hemicelluloses and thereby intensifying the extraction. The diffusion of the dissolved hemicelluloses from the wood particle is a major part of the extraction process. Therefore, a particle size study ranging from 0.5 mm wood particles to industrial size wood chips was conducted to investigate the internal mass transfer of the hemicelluloses. Unsurprisingly, it showed that hemicelluloses were extracted faster from smaller wood particles than larger although it did not seem to have a substantial effect on the average molar mass of the extracted hemicelluloses. However, smaller particle sizes require more energy to manufacture and thus increases the economic cost. Since bark comprises 10 – 15 % of a tree, it is important to also consider it in a biorefinery concept. Spruce inner and outer bark was hot-water extracted separately to investigate the possibility to isolate the bark hemicelluloses. It was showed that the bark hemicelluloses comprised mostly of pectic material and differed considerably from the wood hemicelluloses. The bark hemicelluloses, or pectins, could be extracted at lower temperatures than the wood hemicelluloses. A chemical characterization, done separately on inner and outer bark, showed that inner bark contained over 10 % stilbene glucosides that could be extracted already at 100 °C with aqueous acetone.
Resumo:
Solvent extraction of calcium and magnesium impurities from a lithium-rich brine (Ca ~ 2,000 ppm, Mg ~ 50 ppm, Li ~ 30,000 ppm) was investigated using a continuous counter-current solvent extraction mixer-settler set-up. The literature review includes a general review about resources, demands and production methods of Li followed by basics of solvent extraction. Experimental section includes batch experiments for investigation of pH isotherms of three extractants; D2EHPA, Versatic 10 and LIX 984 with concentrations of 0.52, 0.53 and 0.50 M in kerosene respectively. Based on pH isotherms LIX 984 showed no affinity for solvent extraction of Mg and Ca at pH ≤ 8 while D2EHPA and Versatic 10 were effective in extraction of Ca and Mg. Based on constructed pH isotherms, loading isotherms of D2EHPA (at pH 3.5 and 3.9) and Versatic 10 (at pH 7 and 8) were further investigated. Furthermore based on McCabe-Thiele method, two extraction stages and one stripping stage (using HCl acid with concentration of 2 M for Versatic 10 and 3 M for D2EHPA) was practiced in continuous runs. Merits of Versatic 10 in comparison to D2EHPA are higher selectivity for Ca and Mg, faster phase disengagement, no detrimental change in viscosity due to shear amount of metal extraction and lower acidity in stripping. On the other hand D2EHPA has less aqueous solubility and is capable of removing Mg and Ca simultaneously even at higher Ca loading (A/O in continuous runs > 1). In general, shorter residence time (~ 2 min), lower temperature (~23 °C), lower pH values (6.5-7.0 for Versatic 10 and 3.5-3.7 for D2EHPA) and a moderately low A/O value (< 1:1) would cause removal of 100% of Ca and nearly 100% of Mg while keeping Li loss less than 4%, much lower than the conventional precipitation in which 20% of Li is lost.