6 resultados para transform-based
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Multispectral images contain information from several spectral wavelengths and currently multispectral images are widely used in remote sensing and they are becoming more common in the field of computer vision and in industrial applications. Typically, one multispectral image in remote sensing may occupy hundreds of megabytes of disk space and several this kind of images may be received from a single measurement. This study considers the compression of multispectral images. The lossy compression is based on the wavelet transform and we compare the suitability of different waveletfilters for the compression. A method for selecting a wavelet filter for the compression and reconstruction of multispectral images is developed. The performance of the multidimensional wavelet transform based compression is compared to other compression methods like PCA, ICA, SPIHT, and DCT/JPEG. The quality of the compression and reconstruction is measured by quantitative measures like signal-to-noise ratio. In addition, we have developed a qualitative measure, which combines the information from the spatial and spectral dimensions of a multispectral image and which also accounts for the visual quality of the bands from the multispectral images.
Resumo:
Technological progress has made a huge amount of data available at increasing spatial and spectral resolutions. Therefore, the compression of hyperspectral data is an area of active research. In somefields, the original quality of a hyperspectral image cannot be compromised andin these cases, lossless compression is mandatory. The main goal of this thesisis to provide improved methods for the lossless compression of hyperspectral images. Both prediction- and transform-based methods are studied. Two kinds of prediction based methods are being studied. In the first method the spectra of a hyperspectral image are first clustered and and an optimized linear predictor is calculated for each cluster. In the second prediction method linear prediction coefficients are not fixed but are recalculated for each pixel. A parallel implementation of the above-mentioned linear prediction method is also presented. Also,two transform-based methods are being presented. Vector Quantization (VQ) was used together with a new coding of the residual image. In addition we have developed a new back end for a compression method utilizing Principal Component Analysis (PCA) and Integer Wavelet Transform (IWT). The performance of the compressionmethods are compared to that of other compression methods. The results show that the proposed linear prediction methods outperform the previous methods. In addition, a novel fast exact nearest-neighbor search method is developed. The search method is used to speed up the Linde-Buzo-Gray (LBG) clustering method.
Resumo:
The topic of this thesis is the simulation of a combination of several control and data assimilation methods, meant to be used for controlling the quality of paper in a paper machine. Paper making is a very complex process and the information obtained from the web is sparse. A paper web scanner can only measure a zig zag path on the web. An assimilation method is needed to process estimates for Machine Direction (MD) and Cross Direction (CD) profiles of the web. Quality control is based on these measurements. There is an increasing need for intelligent methods to assist in data assimilation. The target of this thesis is to study how such intelligent assimilation methods are affecting paper web quality. This work is based on a paper web simulator, which has been developed in the TEKES funded MASI NoTes project. The simulator is a valuable tool in comparing different assimilation methods. The thesis contains the comparison of four different assimilation methods. These data assimilation methods are a first order Bayesian model estimator, an ARMA model based on a higher order Bayesian estimator, a Fourier transform based Kalman filter estimator and a simple block estimator. The last one can be considered to be close to current operational methods. From these methods Bayesian, ARMA and Kalman all seem to have advantages over the commercial one. The Kalman and ARMA estimators seems to be best in overall performance.
Resumo:
Paperin pinnan karheus on yksi paperin laatukriteereistä. Sitä mitataan fyysisestipaperin pintaa mittaavien laitteiden ja optisten laitteiden avulla. Mittaukset vaativat laboratorioolosuhteita, mutta nopeammille, suoraan linjalla tapahtuville mittauksilla olisi tarvetta paperiteollisuudessa. Paperin pinnan karheus voidaan ilmaista yhtenä näytteelle kohdistuvana karheusarvona. Tässä työssä näyte on jaettu merkitseviin alueisiin, ja jokaiselle alueelle on laskettu erillinen karheusarvo. Karheuden mittaukseen on käytetty useita menetelmiä. Yleisesti hyväksyttyä tilastollista menetelmää on käytetty tässä työssä etäisyysmuunnoksen lisäksi. Paperin pinnan karheudenmittauksessa on ollut tarvetta jakaa analysoitava näyte karheuden perusteella alueisiin. Aluejaon avulla voidaan rajata näytteestä selvästi karheampana esiintyvät alueet. Etäisyysmuunnos tuottaa alueita, joita on analysoitu. Näistä alueista on muodostettu yhtenäisiä alueita erilaisilla segmentointimenetelmillä. PNN -menetelmään (Pairwise Nearest Neighbor) ja naapurialueiden yhdistämiseen perustuvia algoritmeja on käytetty.Alueiden jakamiseen ja yhdistämiseen perustuvaa lähestymistapaa on myös tarkasteltu. Segmentoitujen kuvien validointi on yleensä tapahtunut ihmisen tarkastelemana. Tämän työn lähestymistapa on verrata yleisesti hyväksyttyä tilastollista menetelmää segmentoinnin tuloksiin. Korkea korrelaatio näiden tulosten välillä osoittaa onnistunutta segmentointia. Eri kokeiden tuloksia on verrattu keskenään hypoteesin testauksella. Työssä on analysoitu kahta näytesarjaa, joidenmittaukset on suoritettu OptiTopolla ja profilometrillä. Etäisyysmuunnoksen aloitusparametrit, joita muutettiin kokeiden aikana, olivat aloituspisteiden määrä ja sijainti. Samat parametrimuutokset tehtiin kaikille algoritmeille, joita käytettiin alueiden yhdistämiseen. Etäisyysmuunnoksen jälkeen korrelaatio oli voimakkaampaa profilometrillä mitatuille näytteille kuin OptiTopolla mitatuille näytteille. Segmentoiduilla OptiTopo -näytteillä korrelaatio parantui voimakkaammin kuin profilometrinäytteillä. PNN -menetelmän tuottamilla tuloksilla korrelaatio oli paras.
Resumo:
This thesis studies properties of transforms based on parabolic scaling, like Curvelet-, Contourlet-, Shearlet- and Hart-Smith-transform. Essentially, two di erent questions are considered: How these transforms can characterize H older regularity and how non-linear approximation of a piecewise smooth function converges. In study of Hölder regularities, several theorems that relate regularity of a function f : R2 → R to decay properties of its transform are presented. Of particular interest is the case where a function has lower regularity along some line segment than elsewhere. Theorems that give estimates for direction and location of this line, and regularity of the function are presented. Numerical demonstrations suggest also that similar theorems would hold for more general shape of segment of low regularity. Theorems related to uniform and pointwise Hölder regularity are presented as well. Although none of the theorems presented give full characterization of regularity, the su cient and necessary conditions are very similar. Another theme of the thesis is the study of convergence of non-linear M ─term approximation of functions that have discontinuous on some curves and otherwise are smooth. With particular smoothness assumptions, it is well known that squared L2 approximation error is O(M-2(logM)3) for curvelet, shearlet or contourlet bases. Here it is shown that assuming higher smoothness properties, the log-factor can be removed, even if the function still is discontinuous.
Resumo:
2016 is the outbreak year of the virtual reality industry. In the field of virtual reality, 3D surveying plays an important role. Nowadays, 3D surveying technology has received increasing attention. This project aims to establish and optimize a WebGL three-dimensional broadcast platform combined with streaming media technology. It takes streaming media server and panoramic video broadcast in browser as the application background. Simultaneously, it discusses about the architecture from streaming media server to panoramic media player and analyzing relevant theory problem. This paper focuses on the debugging of streaming media platform, the structure of WebGL player environment, different types of ball model analysis, and the 3D mapping technology. The main work contains the following points: Initially, relay on Easy Darwin open source streaming media server, built a streaming service platform. It can realize the transmission from RTSP stream to streaming media server, and forwards HLS slice video to clients; Then, wrote a WebGL panoramic video player based on Three.js lib with JQuery browser playback controls. Set up a HTML5 panoramic video player; Next, analyzed the latitude and longitude sphere model which from Three.js library according to WebGL rendering method. Pointed out the drawbacks of this model and the breakthrough point of improvement; After that, on the basis of Schneider transform principle, established the Schneider sphere projection model, and converted the output OBJ file to JS file for media player reading. Finally implemented real time panoramic video high precision playing without plugin; At last, I summarized the whole project. Put forward the direction of future optimization and extensible market.