28 resultados para tissue distributions

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we used market settlement prices of European call options on stock index futures to extract implied probability distribution function (PDF). The method used produces a PDF of returns of an underlying asset at expiration date from implied volatility smile. With this method, the assumption of lognormal distribution (Black-Scholes model) is tested. The market view of the asset price dynamics can then be used for various purposes (hedging, speculation). We used the so called smoothing approach for implied PDF extraction presented by Shimko (1993). In our analysis we obtained implied volatility smiles from index futures markets (S&P 500 and DAX indices) and standardized them. The method introduced by Breeden and Litzenberger (1978) was then used on PDF extraction. The results show significant deviations from the assumption of lognormal returns for S&P500 options while DAX options mostly fit the lognormal distribution. A deviant subjective view of PDF can be used to form a strategy as discussed in the last section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patologian laboratoriossa leikepreparaatin valmistuksen viimeinen vaihe on objektilasin peittäminen. Tämä voidaan suorittaa manuaalisesti tai peitinautomaatilla. Objektilasin ja peitinlasin väliin tulee peitinaine, joita on monia erilaisia. Peittämisen tulee olla mahdollisimman laadukasta huolimatta siitä, tehdäänkö se manuaalisesti tai peitinautomaatilla. Tämä tarkoittaa, että peitetyillä objektilaseilla ei saisi olla ilmakuplia ja niiden tulisi olla kirkkaita. Työni kohteena oli kartoittaa, minkälaisia käyttöongelmia Tissue-Tek GLC 550 -peitinlasiautomaatissa on esiintynyt HUSLAB/ Meilahden patologian laboratoriot/ Ihopatologialla. Työhön otin mukaan myös kaksi samanlaista laitetta, jotka sijaitsevat HUSLAB/ Meilahden patologian laboratoriot/ Patologian keskuslaboratoriolla. Yleisimpiä käyttöongelmia ovat olleet laitteiden antamat vikahälytykset ja ilmakuplien jääminen objektilaseille. Näille kolmelle peitinlasiautomaatille laadin kolmen viikon ajaksi täytettävän ongelmanseurantalomakkeen, jolla kartoitettiin laitteissa esiintyneita hälytyksiä. Tämän lisäksi suoritin kokeilun HUSLAB/ Meilahden patologian laboratoriot/ Ihopatologialla, jossa empiirisesti kokeilemalla muuntelin laitteessa peitinaineen tipan kokoa, peitinaineen juovan pituutta objektilasilla ja peitinlasien lämpötilaa niitä käyttöön otettaessa. Hälytystyyppejä esiintyi neljä erilaista. Yhdellä peitinlasiautomaatilla hälytyksiä esiintyi vähintään kuusi kertaa. Laitemyyjän Algol Pharma Oy:n kanssa pohdimme ratkaisuja käyttöongelmiin. Hälytyksien vähentämiseksi tärkeintä on huolehtia laitteen päivittäisestä puhdistuksesta. Laitteen parametreja säätämällä voidaan vähentää tiettyjä hälytyksiä. Laitteen käyttäjä voi säätää joitakin parametreja ja loput on säädeltävissä laitehuoltajan toimesta. Omassa kokeilussani huomasin, että säätämällä peitinainejuovan kohdan juuri sopivaksi peitinlasin mukaan saavutetaan mahdollisimman laadukasta peittämistä. Työlläni saatiin vähennettyä ilmakuplien määrää objektilaseilla HUSLAB/ Meilahden patologian laboratoriot/ Ihopatologialla. Jatkossa nähdään, vähentyvätkö hälytykset, kun kiinnitetään huomiota erityisesti peitinlasiautomaatin puhdistukseen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioactive glasses are surface-active ceramic materials which support and accelerate bone growth in the body. During the healing of a bone fracture or a large bone defect, fixation is often needed. The aim of this thesis was to determine the dissolution behaviour and biocompatibility of a composite consisting of poly(ε-caprolactone-co-DL-lactide) and bioactive glass (S53P4). In addition the applicability as an injectable material straight to a bone defect was assessed. In in vitro tests the dissolution behaviour of plain copolymer and composites containing bioactive glass granules was evaluated, as well as surface reactivity and the material’s capability to form apatite in simulated body fluid (SBF). The human fibroblast proliferation was tested on materials in cell culture. In in vivo experiments, toxicological tests, material degradation and tissue reactions were tested both in subcutaneous space and in experimental bone defects. The composites containing bioactive glass formed a unified layer of apatite on their surface in SBF. The size and amount of glass granules affected the degradation of polymer matrix, as well the material’s surface reactivity. In cell culture on the test materials the human gingival fibroblasts proliferated and matured faster compared with control materials. In in vitro tests a connective tissue capsule was formed around the specimens, and became thinner in the course of time. Foreign body cell reactions in toxicological tests were mild. In experimental bone defects the specimens with a high concentration of small bioactive glass granules (<45 μm) formed a dense apatite surface layer that restricted the bone ingrowth to material. The range of large glass granules (90-315 μm) with high concentrations formed the best bonding with bone, but slow degradation on the copolymer restricted the bone growth only in the superficial layers. In these studies, the handling properties of the material proved to be good and tissue reactions were mild. The reactivity of bioactive glass was retained inside the copolymer matrix, thus enabling bone conductivity with composites. However, the copolymer was noticed to degradate too slowly compared with the bone healing. Therefore, the porosity of the material should be increased in order to improve tissue healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity has become the leading cause of many chronic diseases, such as type 2 diabetes and cardiovascular diseases. The prevalence of obesity is high in developed countries and it is also a major cause of the use of health services. Ectopic fat accumulation in organs may lead to metabolic disturbances, such as insulin resistance.Weight loss with very-low-energy diet is known to be safe and efficient. Weight loss improves whole body insulin sensitivity, but its effects on tissue and organ level in vivo are not well known. The aims of the studies were to investigate possible changes of weight loss in glucose and fatty acid uptake and perfusion and fat distribution at tissue and organ level using positron emission tomography and magnetic resonance imaging and spectroscopy in 34 healthy obese subjects. The results showed that whole-body insulin sensitivity increased after weight loss with very-low-energy diet and this is associated with improved skeletal muscle insulin-stimulated glucose uptake, but not with adipose tissue, liver or heart glucose uptake. Liver insulin resistance decreased after weight loss. Liver and heart free fatty acid uptakes decreased concomitantly with liver and heart triglyceride content. Adipose tissue and myocardial perfusion decreased. In conclusion, enhanced skeletal muscle glucose uptake leads to increase in whole-body insulin sensitivity when glucose uptake is preserved in other organs studied. These findings suggest that lipid accumulation found in the liver and the heart in obese subjects without co-morbidies is in part reversible by reduced free fatty acid uptake after weight loss. Reduced lipid accumulation in organs may improve metabolic disturbances, e.g. decrease liver insulin resistance. Keywords: Obesity, weight loss, very-low-energy diet, adipose tissue metabolism, liver metabolism, heart metabolism, positron emission tomography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims:This study was carried out to evaluate the feasibility of two different methods to determine free flap perfusion in cancer patients undergoing major reconstructive surgery. The hypotheses was that low perfusion in the flap is associated with flap complications. Patients and methods: Between August 2002 and June 2008 at the Department of Otorhinolaryngology – Head and Neck Surgery, Department of Surgery, and at the PET Centre, Turku, 30 consecutive patients with 32 free flaps were included in this study. The perfusion of the free microvascular flaps was assessed with positron emission tomography (PET) and radioactive water ([15O] H2O) in 40 radiowater injections in 33 PET studies. Furthermore, 24 free flaps were monitored with a continuous tissue oxygen measurement using flexible polarographic catheters for an average of three postoperative days. Results: Of the 17 patients operated on for head and neck (HN) cancer and reconstructed with 18 free flaps, three re-operations were carried out due to poor tissue oxygenation as indicated by ptiO2 monitoring results and three other patients were reoperated on for postoperative hematomas in the operated area. Blood perfusion assessed with PET (BFPET) was above 2.0 mL / min / 100 g in all flaps and a low flap-to-muscle BFPET ratio appeared to correlate with poor survival of the flap. Survival in this group of HN cancer patients was 9.0 months (median, range 2.4-34.2) after a median follow-up of 11.9 months (range 1.0-61.0 months). Seven HN patients of this group are alive without any sign of recurrence and one patient has died of other causes. All of the 13 breast reconstruction patients included in the study are alive and free of disease at a median follow-up time of 27.4 months (range 13.9-35.7 months). Re-explorations were carried out in three patients due data provided by ptiO2 monitoring and one re-exploration was avoided on the basis of adequate blood perfusion assessed with PET. Two patients had donorsite morbidity and 3 patients had partial flap necrosis or fat necrosis. There were no total flap losses. Conclusions: PtiO2 monitoring is a feasible method of free flap monitoring when flap temperature is monitored and maintained close to the core temperature. When other monitoring methods give controversial results or are unavailable, [15O] H2O PET technique is feasible in the evaluation of the perfusion of the newly reconstructed free flaps.