4 resultados para thyroid hormone receptor agonist

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gonadal somatic cell and adrenocortical endocrine tumors are rare. The incidence of adrenocortical carcinomas is only 1-2/1000000 a year. However, they are aggressive, especially in adulthood and currently surgery is the only curative treatment. Cytotoxic agents are in use in advanced cancers, but side effects and multidrug resistance are often problems. Thus there is a need for novel curative treatment methods. In contrast, ovarian granulosa cell tumors and testicular Leydig cell tumors are usually benign, especially at a younger age. The aim of the present thesis was to study a novel targeted treatment method through luteinizing hormone/chorionic gonadotropin receptor (LHCGR) in a transgenic mouse tumor model. The cytotoxic agent was lytic peptide Hecate-CGbeta conjugate where 23 amino acid Hecate, a synthetic form of honeybee venom melittin, was conjugated to 15 amino acid fragment of human chorionic gonadotropin β subunit. Lytic peptides are known to act only on negatively charged cells, such as bacteria and cancer cells and hereby, due to hCGbeta fragment, the conjugate is able to bind directly to LHCGR bearing cancer cells, saving the healthy ones. The experiments were carried out in inhibin-alpha-Simian Virus 40-T-antigen transgenic mice that are known to express LHCGR-bearing gonadal tumors, namely Leydig and granulosa cell tumors by 100% penetrance. If the mice are gonadectomized prepubertally they form adrenocortical tumors instead. Transgenic and wild type mice were treated for three consecutive weeks with control vehicle, Hecate or Hecate-CGbeta conjugate. GnRH antagonist or estradiol was given to a group of mice with or without Hecate-CGbeta conjugate to analyze the additive role of gonadotropin blockage in adrenocortical tumor treatment efficacy. Hecate-CGbeta conjugate was able to diminish the gonadal and adrenal tumor size effectively in males. No treatment related side effects were found. Gonadotropin blockage through GnRH antagonist was the best treatment in female adrenal tumors. The mode of cell death by Hecate-CGbeta conjugate was proven to be through necrosis. LHCGR and GATA-4 were co-expressed in tumors, where the treatment down-regulated their expression simultaneously, suggesting their possible use as tumor markers. In conclusion, the present thesis showed that Hecate-CGbeta conjugate targets its action selectively through LHCGR and selectively kills the LHCGR bearing tumor cells. It works both in gonadal somatic and in ectopic LHCGR bearing adrenal tumors. These results establish a more general principle that receptors expressed ectopically in malignant cells can be exploited in targeted cytotoxic therapies without affecting the normal healthy cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine mammals are exposed to persistent organic pollutants (POPs), which may be biotransformed to metabolites some of which are highly toxic. Both POPs and their metabolites may lead to adverse health effects, which have been studied using various biomarkers. Changes in endocrine homeostasis have been suggested to be sensitive biomarkers for contaminant-related effects. The overall objective of this doctoral thesis was to investigate biotransformation capacity of POPs and their potential endocrine disruptive effects in two contrasting ringed seal populations from the low contaminated Svalbard area and from the highly contaminated Baltic Sea. Biotransformation capacity was studied by determining the relationships between congener-specific patterns and concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs) and their hydroxyl (OH)- and/or methylsulfonyl (MeSO2)-metabolites, and catalytic activities of hepatic xenobiotic-metabolizing phase I and II enzymes. The results suggest that the biotransformation of PCBs, PBDEs and toxaphenes in ringed seals depends on the congener-specific halogen-substitution pattern. Biotransformation products detected in the seals included OH-PCBs, MeSO2-PCBs and –DDE, pentachlorophenol, 4-OHheptachlorostyrene, and to a minor extent OH-PBDEs. The effects of life history state (moulting and fasting) on contaminant status and potential biomarkers for endocrine disruption, including hormone and vitamin homeostasis, were investigated in the low contaminated ringed seal population from Svalbard. Moulting/fasting status strongly affected thyroid, vitamin A and calcitriol homeostasis, body condition and concentrations of POPs and their OH-metabolites. In contrast, moulting/fasting status was not associated with variations in vitamin E levels. Endocrine disruptive effects on multiple endpoints were investigated in the two contrasting ringed seal populations. The results suggest that thyroid, vitamin A and calcitriol homeostasis may be affected by the exposure of contaminants and/or their metabolites in the Baltic ringed seals. Complex and non-linear relationships were observed between the contaminant levels and the endocrine variables. Positive relationships between circulating free and total thyroid hormone concentration ratios and OH-PCBs suggest that OH-PCBs may mediate the disruption of thyroid hormone transport in plasma. Species differences in thyroid and bone-related effects of contaminants were studied in ringed and grey seals from low contaminated references areas and from the highly contaminated Baltic Sea. The results indicate that these two species living at the same environment approximately at the same trophic level respond in a very different way to contaminant exposure. The results of this thesis suggest that the health status of the Baltic ringed seals has still improved during the last decade. PCB and DDE levels have decreased in these seals and the contaminant-related effects are different today than a decade ago. The health of the Baltic ringed seals is still suggested to be affected by the contaminant exposure. At the present level of the contaminant exposure the Baltic ringed seals seem to be at a zone where their body is able to compensate for the contaminant-mediated endocrine disruption. Based on the results of this thesis, several recommendations that could be applied on monitoring and assessing risk for contaminant effects are provided. Circulating OH-metabolites should be included in monitoring and risk assessment programs due to their high toxic potential. It should be noted that endogenous variables may have complex and highly variable responses to contaminant exposure including non-linear responses. These relationships may be further confounded by life history status. Therefore, it is highly recommended that when using variables related to endocrine homeostasis to investigate/monitor or assess the risk of contaminant effects in seals, the life history status of the animal should be carefully taken into consideration. This applies especially when using thyroid, vitamin A or calcitriolrelated parameters during moulting/fasting period. Extrapolations between species for assessing risk for contaminant effects in phocid seals should be avoided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoclasts are multinucleated bone-degrading cells that undergo large changes in their polarisation and vesicular trafficking during the bone resorption cycle. Rab proteins are small GTPases that offer both temporal and spatial regulation to the transport between membranous organelles. Previously the presence and function of only few of the currently known 60 Rab proteins in osteoclasts have been reported. In this study, the expression of 26 Rab genes in bone-resorbing osteoclasts was demonstrated with gene-specific primer pairs. The further analysis of three Rab genes during human osteoclast differentiation revealed that Rab13 gene is highly induced during osteoclastogenesis. The presence of Rab13 protein in the secretory vesicles directed towards the ruffled border and in the endocytotic or transcytotic pathways in resorbing osteoclasts was excluded. The localisation of Rab13 suggests that that it is associated with a previously unknown vesicle population travelling between the trans-Golgi network and the basolateral membrane in bone resorbing osteoclasts. Rab proteins convey their functions by binding to specific effector proteins. We found a novel Rab13 interaction with endospanins-1 and -2 that are yet poorly characterised small transmembrane proteins. The Rab13 subfamily member Rab8 also bound to endospanins, while Rab10 and unrelated Rabs did not. Rab13 and endospanin-2 co-localised in perinuclear vesicles in transfected cells, demonstrating the interaction also in vivo. The inhibition of Rab13 did not interfere with the localisation of endospanin-2 nor did it affect the cell surface expression of growth hormone receptor, as has been previously described for endospanins. The physiological role of this novel protein-protein interaction thus remains to be clarified. The analysis of the transcytotic route in bone resorbing osteoclasts revealed that multiple vesicle populations arise from the ruffled border and transport the bone degradation products for exocytosis. These vesicles are directed to the functional secretory domain that is encircled by an actin-based molecular barrier. Furthermore, the transcytotic vesicles contain abundant Helix pomatia lectin binding sites and represent lipid raft concentrates. Finally, autophagosomal compartments may also be involved in the transcytosis.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Kalciumjonen reglerar flera processer i celler såsom transkribering av gener, celldelning, cellernas rörlighet och celldöd. Därför har cellerna utvecklat många mekanismer för att reglera den intracellulära kalciumkoncentrationen. Kalciumkanaler spelar en viktig roll i denna regleringsprocess. TRPC-kanalerna (eng. canonical transient receptor potential) är en familj av jonkanaler med sju medlemmar (TRPC1-7) vars regleringsmekanismer och fysiologiska roller är varierande. TRPC2-kanalens fysiologiska signifikans, samt hur kanalen regleras, är dåligt karakteriserad. För första gången, rapporterar vi närvaron av TRPC2 kanalen i råttans sköldkörtelceller samt primära sköldkörtelceller från råtta. Hos gnagare har TRPC2 antagits vara exklusivt uttryckt i det vomeronasala organet. För att undersöka den fysiologiska betydelsen av kanalen, har vi utvecklat stabila celler med nedreglerat TRPC2 (shTRPC2) m.h.a. shRNA-teknik. Nedreglering av TRPC2 resulterade i stora skillnader i flera viktiga cellulära funktioner och i regleringen av sköldkörtelcellernas cellsignalering. Nedreglering av TRPC2 orsakade minskad agonist-beroende frigivning av kalcium från det endoplasmatiska nätverket, samt minskat agonist-beroende inflöde av extracellulärt kalcium, men ökade det basala kalciuminflödet. Uttrycket av PKCβ1 och PKCδ, SERCA-aktiviteten och kalciumhalten i det endoplasmatiska nätverket minskade i shTRPC2 celler. Kommunikation mellan kalcium- och cAMP-signalering påvisades vara TRPC2-beroende, vilket visades reglera uttrycket av TSH-receptorn. Vi undersökte också betydelsen av TRPC2 kanalen i reglering av sköldkörtelcellers proliferation, migration, vidhäftning och invasion; processer som alla var dämpade i shTRPC2 celler. Samamnfattningsvis påvisade dessa resultat en ny och viktig fysiologisk betydelse för TRPC2 kanalerna.