14 resultados para thermionic specific detection

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polysialic acid is a carbohydrate polymer which consist of N-acetylneuraminic acid units joined by alpha2,8-linkages. It is developmentally regulated and has an important role during normal neuronal development. In adults, it participates in complex neurological processes, such as memory, neural plasticity, tumor cell growth and metastasis. Polysialic acid also constitutes the capsule of some meningitis and sepsis-causing bacteria, such as Escherichia coli K1, group B meningococci, Mannheimia haemolytica A2 and Moraxella nonliquefaciens. Polysialic acid is poorly immunogenic; therefore high affinity antibodies against it are difficult to prepare, thus specific and fast detection methods are needed. Endosialidase is an enzyme derived from the E. coli K1 bacteriophage, which specifically recognizes and degrades polysialic acid. In this study, a novel detection method for polysialic acid was developed based on a fusion protein of inactive endosialidase and the green fluorescent protein. It utilizes the ability of the mutant, inactive endosialidase to bind but not cleave polysialic acid. Sequencing of the endosialidase gene revealed that amino acid substitutions near the active site of the enzyme differentiate the active and inactive forms of the enzyme. The fusion protein was applied for the detection of polysialic acid in bacteria and neuroblastoma. The results indicate that the fusion protein is a fast, sensitive and specific reagent for the detection of polysialic acid. The use of an inactive enzyme as a specific molecular tool for the detection of its substrate represents an approach which could potentially find wide applicability in the specific detection of diverse macromolecules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Streptococcus suis is an important pig pathogen but it is also zoonotic, i.e. capable of causing diseases in humans. Human S. suis infections are quite uncommon but potentially life-threatening and the pathogen is an emerging public health concern. This Gram-positive bacterium possesses a galabiose-specific (Galalpha1−4Gal) adhesion activity, which has been studied for over 20 years. P-fimbriated Escherichia coli−bacteria also possess a similar adhesin activity targeting the same disaccharide. The galabiose-specific adhesin of S. suis was identified by an affinity proteomics method. No function of the protein identified was formerly known and it was designated streptococcal adhesin P (SadP). The peptide sequence of SadP contains an LPXTG-motif and the protein was proven to be cell wall−anchored. SadP may be multimeric since in SDS-PAGE gel it formed a protein ladder starting from about 200 kDa. The identification was confirmed by producing knockout strains lacking functional adhesin, which had lost their ability to bind to galabiose. The adhesin gene was cloned in a bacterial expression host and properties of the recombinant adhesin were studied. The galabiose-binding properties of the recombinant protein were found to be consistent with previous results obtained studying whole bacterial cells. A live-bacteria application of surface plasmon resonance was set up, and various carbohydrate inhibitors of the galabiose-specific adhesins were studied with this assay. The potencies of the inhibitors were highly dependent on multivalency. Compared with P-fimbriated E. coli, lower concentrations of galabiose derivatives were needed to inhibit the adhesion of S. suis. Multivalent inhibitors of S. suis adhesion were found to be effective at low nanomolar concentrations. To specifically detect galabiose adhesin−expressing S. suis bacteria, a technique utilising magnetic glycoparticles and an ATP bioluminescence bacterial detection system was also developed. The identification and characterisation of the SadP adhesin give valuable information on the adhesion mechanisms of S. suis, and the results of this study may be helpful for the development of novel inhibitors and specific detection methods of this pathogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Post-testicular sperm maturation occurs in the epididymis. The ion concentration and proteins secreted into the epididymal lumen, together with testicular factors, are believed to be responsible for the maturation of spermatozoa. Disruption of the maturation of spermatozoa in the epididymis provides a promising strategy for generating a male contraceptive. However, little is known about the proteins involved. For drug development, it is also essential to have tools to study the function of these proteins in vitro. One approach for screening novel targets is to study the secretory products of the epididymis or the G protein-coupled receptors (GPCRs) that are involved in the maturation process of the spermatozoa. The modified Ca2+ imaging technique to monitor release from PC12 pheochromocytoma cells can also be applied to monitor secretory products involved in the maturational processes of spermatozoa. PC12 pheochromocytoma cells were chosen for evaluation of this technique as they release catecholamines from their cell body, thus behaving like endocrine secretory cells. The results of the study demonstrate that depolarisation of nerve growth factor -differentiated PC12 cells releases factors which activate nearby randomly distributed HEL erythroleukemia cells. Thus, during the release process, the ligands reach concentrations high enough to activate receptors even in cells some distance from the release site. This suggests that communication between randomly dispersed cells is possible even if the actual quantities of transmitter released are extremely small. The development of a novel method to analyse GPCR-dependent Ca2+ signalling in living slices of mouse caput epididymis is an additional tool for screening for drug targets. By this technique it was possible to analyse functional GPCRs in the epithelial cells of the ductus epididymis. The results revealed that, both P2X- and P2Y-type purinergic receptors are responsible for the rapid and transient Ca2+ signal detected in the epithelial cells of caput epididymides. Immunohistochemical and reverse transcriptase-polymerase chain reaction (RTPCR) analyses showed the expression of at least P2X1, P2X2, P2X4 and P2X7, and P2Y1 and P2Y2 receptors in the epididymis. Searching for epididymis-specific promoters for transgene delivery into the epididymis is of key importance for the development of specific models for drug development. We used EGFP as the reporter gene to identify proper promoters to deliver transgenes into the epithelial cells of the mouse epididymis in vivo. Our results revealed that the 5.0 kb murine Glutathione peroxidase 5 (GPX5) promoter can be used to target transgene expression into the epididymis while the 3.8 kb Cysteine-rich secretory protein-1 (CRISP-1) promoter can be used to target transgene expression into the testis. Although the visualisation of EGFP in living cells in culture usually poses few problems, the detection of EGFP in tissue sections can be more difficult because soluble EGFP molecules can be lost if the cell membrane is damaged by freezing, sectioning, or permeabilisation. Furthermore, the fluorescence of EGFP is dependent on its conformation. Therefore, fixation protocols that immobilise EGFP may also destroy its usefulness as a fluorescent reporter. We therefore developed a novel tissue preparation and preservation techniques for EGFP. In addition, fluorescence spectrophotometry with epididymal epithelial cells in suspension revealed the expression of functional purinergic, adrenergic, cholinergic and bradykinin receptors in these cell lines (mE-Cap27 and mE-Cap28). In conclusion, we developed new tools for studying the role of the epididymis in sperm maturation. We developed a new technique to analyse GPCR dependent Ca2+ signalling in living slices of mouse caput epididymis. In addition, we improved the method of detecting reporter gene expression. Furthermore, we characterised two epididymis-specific gene promoters, analysed the expression of GPCRs in epididymal epithelial cells and developed a novel technique for measurement of secretion from cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of the heavily overlapping symptoms, pathogen-specific diagnosis and treatment of infectious diseases is difficult based on clinical symptoms alone. Therefore, patients are often treated empirically. More efficient treatment and management of infectious diseases would require rapid point-of-care compatible in vitro diagnostic methods. However, current point-of-care methods are unsatisfactory in performance and in cost structure. The lack of pointof- care methods results in unnecessary use of antibiotics, suboptimal use of virus-specific drugs, and compromised patient care. In this thesis, the applicability of a two-photon excitation fluorometry is evaluated as a tool for rapid detection of infectious diseases. New separation-free immunoassay methodologies were developed and validated for the following application areas: general inflammation markers, pathogen-specific antibodies, pathogen-specific antigens, and antimicrobial susceptibility testing. In addition, dry-reagent methodology and nanoparticulate tracers are introduced in context to the technique. The results show that the new assay technique is a versatile tool for rapid detection of infectious diseases in many different application areas. One particularly attractive area is rapid multianalyte testing of respiratory infections, where the technique was shown to allow simple assay protocols and comparable performance to the state-of-the-art laboratory methods. If implemented in clinical diagnostic use, the new methods could improve diagnostic testing routines, especially in rapid testing of respiratory tract infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The aim of this study was to investigate the use of sentinel lymph node biopsy (SLNB) and whole body positron emission tomography (PET), with emphasis on surgical treatment and prognosis, in the detection of clinically occult metastases in patients with clinically localized cutaneous melanoma. Patients and methods: The study population consisted of 1255 patients with clinical stage I–II cutaneous melanoma, operated at Turku University Hospital between 1983 and 2007. 334 patients underwent SLNB and they were compared to 921 retrospective patients. A subgroup of 30 symptom-free patients with high risk melanoma underwent prospectively whole body PET 6–24 months postoperatively. Results: Overall, the disease-specific survival rate was 84.4 % at five years. Sex, Breslow thickness, age and nodal status were independent prognostic factors for survival. SLNB revealed occult nodal metastases in 17 % of the patients. There was no significant difference in disease-specific overall survival between SLNB patients and controls, but the nodal disease-free time was significantly longer suggesting better local control after SLNB and subsequent completion lymph node dissection. The followup time was different between the study cohorts and initial surgery was performed during different time periods. SLNB detected micrometastases in seven of 155 patients (4.5 %) with thin T1 primary melanoma and in four of 25 patients (16 %) with head and neck melanoma. In six of 30 asymptomatic patients with high risk melanoma (20 %), whole body PET detected occult distant metastases. Conclusion: Both SLNB and whole body PET were reliable methods to detect clinically occult metastases in patients with cutaneous melanoma. This upstaging altered the treatment in each case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particulate nanostructures are increasingly used for analytical purposes. Such particles are often generated by chemical synthesis from non-renewable raw materials. Generation of uniform nanoscale particles is challenging and particle surfaces must be modified to make the particles biocompatible and water-soluble. Usually nanoparticles are functionalized with binding molecules (e.g., antibodies or their fragments) and a label substance (if needed). Overall, producing nanoparticles for use in bioaffinity assays is a multistep process requiring several manufacturing and purification steps. This study describes a biological method of generating functionalized protein-based nanoparticles with specific binding activity on the particle surface and label activity inside the particles. Traditional chemical bioconjugation of the particle and specific binding molecules is replaced with genetic fusion of the binding molecule gene and particle backbone gene. The entity of the particle shell and binding moieties are synthesized from generic raw materials by bacteria, and fermentation is combined with a simple purification method based on inclusion bodies. The label activity is introduced during the purification. The process results in particles that are ready-to-use as reagents in bioaffinity. Apoferritin was used as particle body and the system was demonstrated using three different binding moieties: a small protein, a peptide and a single chain Fv antibody fragment that represents a complex protein including disulfide bridge.If needed, Eu3+ was used as label substance. The results showed that production system resulted in pure protein preparations, and the particles were of homogeneous size when visualized with transmission electron microscopy. Passively introduced label was stably associated with the particles, and binding molecules genetically fused to the particle specifically bound target molecules. Functionality of the particles in bioaffinity assays were successfully demonstrated with two types of assays; as labels and in particle-enhanced agglutination assay. This biological production procedure features many advantages that make the process especially suited for applications that have frequent and recurring requirements for homogeneous functional particles. The production process of ready, functional and watersoluble particles follows principles of “green chemistry”, is upscalable, fast and cost-effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In Finland, breast cancer (BC) is the most common cancer among women, and prostate cancer (PC) that among men. At the metastatic stage both cancers remain essentially incurable. The goals of therapy include palliation of symptoms, improvement or maintenance of quality of life (QoL), delay of disease progression, and prolongation of survival. Balancing between efficacy and toxicity is the major challenge. With increasing costs of new treatments, appropriate use of resources is paramount. When new treatment regimes are introduced into clinical practice a comprehensive assessment of clinical benefit, adverse effects and cost is necessary. Both BC and PC show a predilection to metastasize to bone. Bone metastases cause significant morbidity impairing the patients´ QoL. Diagnosis of bone metastases relies mainly on radiological methods, which however lack optimal sensitivity and specificity. New tools are needed for detection and follow-up of bone metastases. Aims: Anthracyclines and taxanes are effective chemotherapeutic agents in the treatment of metastatic breast cancer (MBC) with different mechanisms of action. Therefore, evaluation of the combination of anthracyclines with taxanes was a justifiable approach in the treatment of MBC patients. We assessed the efficacy, toxicity, cost of treatment and QoL of BC patients treated with first-line chemotherapy for metastatic disease with the combination epirubicin and docetaxel. We also evaluated the diagnostic potential of tartrate-resistant acid phosphatase 5b (TRACP 5b) and carboxyterminal telopeptides of type I collagen (ICTP) in the diagnosis of bone metastases in BC and TRACP 5b in PC patients. Results: The combination of epirubicin and docetaxel was effective in this phase II study, but required individual dose adjustment to avoid neutropenic infections, and the use of growth factors to maintain a feasible dose level. The response rate was 54 % (95 % CI 37-71) and the median overall survival (OS) was 26 months. Of the patients, 87 % were treated for infections. The treatment of adverse events required additional use of health resources mainly due to neutropenic infections, thereby raising direct treatment costs by 20 %. Despite adverse events, the global QoL was not significantly compromised during the treatment. Clinically evident acute cardiac toxicity was not observed. The combination of serum TRACP 5b and ICTP was at least equally sensitive and specific in detection of of bone metastases as commonly used total alkaline phosphatise (tALP) in BC patients. In contrast, TRACP 5b was less specific and sensitive than tALP as a marker of skeletal changes in PC patients. Conclusions: Treatment with epirubicin and docetaxel showed high efficacy in first-line chemotherapy of MBC. The relatively high incidence of neutropenic infections requiring hospitalization increased the treatment costs. Despite adverse events, the global QoL of the patients was not significantly compromised. The combination of TRACP 5b and ICTP showed similar activity as tALP in detecting bone metastases in MBC. In contrast, TRACP 5b was less specific and sensitive than tALP as a marker of skeletal changes in PC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our understanding of the pathogenesis of organ‐specific autoinflammation has been restricted by limited access to the target organs. Peripheral blood, however, as a preferred transportation route for immune cells, provides a window to assess the entire immune system throughout the body. Transcriptional profiling with RNA stabilizing blood collection tubes reflects in vivo expression profiles at the time the blood is drawn, allowing detection of the disease activity in different samples or within the same sample over time. The main objective of this Ph.D. study was to apply gene‐expression microarrays in the characterization of peripheral blood transcriptional profiles in patients with autoimmune diseases. To achieve this goal a custom cDNA microarray targeted for gene‐expression profiling of human immune system was designed and produced. Sample collection and preparation was then optimized to allow gene‐expression profiling from whole‐blood samples. To overcome challenges resulting from minute amounts of sample material, RNA amplification was successfully applied to study pregnancy related immunosuppression in patients with multiple sclerosis (MS). Furthermore, similar sample preparation was applied to characterize longitudinal genome‐wide expression profiles in children with type 1 diabetes (T1D) associated autoantibodies and eventually clinical T1D. Blood transcriptome analyses, using both the ImmunoChip cDNA microarray with targeted probe selection and genome‐wide Affymetrix U133 Plus 2.0 oligonucleotide array, enabled monitoring of autoimmune activity. Novel disease related genes and general autoimmune signatures were identified. Notably, down‐regulation of the HLA class Ib molecules in peripheral blood was associated with disease activity in both MS and T1D. Taken together, these studies demonstrate the potential of peripheral blood transcriptional profiling in biomedical research and diagnostics. Imbalances in peripheral blood transcriptional activity may reveal dynamic changes that are relevant for the disease but might be completely missed in conventional cross‐sectional studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate-specific antigen (PSA) is a marker that is commonly used in estimating prostate cancer risk. Prostate cancer is usually a slowly progressing disease, which might not cause any symptoms whatsoever. Nevertheless, some cases of cancer are aggressive and need to be treated before they become life-threatening. However, the blood PSA concentration may rise also in benign prostate diseases and using a single total PSA (tPSA) measurement to guide the decision on further examinations leads to many unnecessary biopsies, over-detection, and overtreatment of indolent cancers which would not require treatment. Therefore, there is a need for markers that would better separate cancer from benign disorders, and would also predict cancer aggressiveness. The aim of this study was to evaluate whether intact and nicked forms of free PSA (fPSA-I and fPSA-N) or human kallikrein-related peptidase 2 (hK2) could serve as new tools in estimating prostate cancer risk. First, the immunoassays for fPSA-I and free and total hK2 were optimized so that they would be less prone to assay interference caused by interfering factors present in some blood samples. The optimized assays were shown to work well and were used to study the marker concentrations in the clinical sample panels. The marker levels were measured from preoperative blood samples of prostate cancer patients scheduled for radical prostatectomy. The association of the markers with the cancer stage and grade was studied. It was found that among all tested markers and their combinations especially the ratio of fPSA-N to tPSA and ratio of free PSA (fPSA) to tPSA were associated with both cancer stage and grade. They might be useful in predicting the cancer aggressiveness, but further follow-up studies are necessary to fully evaluate the significance of the markers in this clinical setting. The markers tPSA, fPSA, fPSA-I and hK2 were combined in a statistical model which was previously shown to be able to reduce unnecessary biopsies when applied to large screening cohorts of men with elevated tPSA. The discriminative accuracy of this model was compared to models based on established clinical predictors in reference to biopsy outcome. The kallikrein model and the calculated fPSA-N concentrations (fPSA minus fPSA-I) correlated with the prostate volume and the model, when compared to the clinical models, predicted prostate cancer in biopsy equally well. Hence, the measurement of kallikreins in a blood sample could be used to replace the volume measurement which is time-consuming, needs instrumentation and skilled personnel and is an uncomfortable procedure. Overall, the model could simplify the estimation of prostate cancer risk. Finally, as the fPSA-N seems to be an interesting new marker, a direct immunoassay for measuring fPSA-N concentrations was developed. The analytical performance was acceptable, but the rather complicated assay protocol needs to be improved until it can be used for measuring large sample panels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Control of the world-wide spread of methicillin-resistant Staphylococcus aureus (MRSA) has been unsuccessful in most developed countries. A few countries have been able to maintain a low MRSA prevalence, plausibly due to their strict MRSA control policies. Such policies require wide-scale screening of patients with suspected MRSA colonization, in order to nurse the MRSA-positive patients in contact isolation. The aim of this study was to develop and introduce a 2-photon excited fluorescence detection (TPX) technique for screening of MRSA directly from clinical samples. The assay principle involves specific online immunometric monitoring of S. aureus growth under selective antibiotic pressure. After the novel TPX approach had been set up, its applicability for the detection of MRSA was evaluated using a large MRSA collection including practically all epidemic MRSA strains identified in Finland between 1991 and 2009. The TPX assay was found both sensitive (97.9%) and specific (94.1%) in this epidemiological setting, illustrating that the method is tolerant to wide biological variation as well as to environments with rapidly emerging MRSA strains. When MRSA was screened directly from colonization samples, all patients positive for MRSA by conventional methods were positive also by the TPX assay. The assay capacity was 48 samples per a test run, and the median time required for confirmation of a true-positive screening test result was 3 h 26 min. Collectively, the findings presented in this thesis suggest that the TPX MRSA screening assay could be applicable for direct screening of MRSA colonization samples without any prior steps of isolation. This can potentially mean that contact isolation of suspected carriers testing negative could be discontinued earlier, thereby reducing the costs and burden associated with the containment of MRSA. In case of infection, a positive test result would ensure an early onset of effective therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac troponin (cTn) I and T are the recommended biomarkers for the diagnosis and risk stratification of patients with suspected acute coronary syndrome (ACS), a major cause of cardiovascular death and disability worldwide. It has recently been demonstrated that cTn-specific autoantibodies (cTnAAb) can negatively interfere with cTnI detection by immunoassays to the extent that cTnAAb-positive patients may be falsely designated as cTnI-negative. The aim of this thesis was to develop and optimize immunoassays for the detection of both cTnI and cTnAAb, which would eventually enable exploring the clinical impact of these autoantibodies on cTnI testing and subsequent patient management. The extent of cTnAAb interference in different cTnI assay configurations and the molecular characteristics of cTnAAbs were investigated in publications I and II, respectively. The findings showed that cTnI midfragment targeting immunoassays used predominantly in clinical practice are affected by cTnAAb interference which can be circumvented by using a novel 3+1-type assay design with three capture antibodies against the N-terminus, midfragment and C-terminus and one tracer antibody against the C-terminus. The use of this assay configuration was further supported by the epitope specificity study, which showed that although the midfragment is most commonly targeted by cTnAAbs, the interference basically encompasses the whole molecule, and there may be remarkable individual variation at the affected sites. In publications III and IV, all the data obtained in previous studies were utilized to develop an improved version of an existing cTnAAb assay and a sensitive cTnI assay free of this specific analytical interference. The results of the thesis showed that approximately one in 10 patients with suspected ACS have detectable amounts of cTnAAbs in their circulation and that cTnAAbs can inhibit cTnI determination when targeted against the binding sites of assay antibodies used in its immunological detection. In the light of these observations, the risk of clinical misclassification caused by the presence of cTnAAbs remains a valid and reasonable concern. Because the titers, affinities and epitope specificities of cTnAAbs and the concentration of endogenous cTnI determine the final effect of circulating cTnAAbs, appropriately sized studies on their clinical significance are warranted. The new cTnI and cTnAAb assays could serve as analytical tools for establishing the impact of cTnAAbs on cTnI testing and also for unraveling the etiology of cTn-related autoimmune responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measuring protein biomarkers from sample matrix, such as plasma, is one of the basic tasks in clinical diagnostics. Bioanalytical assays used for the measuring should be able to measure proteins with high sensitivity and specificity. Furthermore, multiplexing capability would also be advantageous. To ensure the utility of the diagnostic test in point-of-care setting, additional requirements such as short turn-around times, ease-ofuse and low costs need to be met. On the other hand, enhancement of assay sensitivity could enable exploiting novel biomarkers, which are present in very low concentrations and which the current immunoassays are unable to measure. Furthermore, highly sensitive assays could enable the use of minimally invasive sampling. In the development of high-sensitivity assays the label technology and affinity binders are in pivotal role. Additionally, innovative assay designs contribute to the obtained sensitivity and other characteristics of the assay as well as its applicability. The aim of this thesis was to study the impact of assay components on the performance of both homogeneous and heterogeneous assays. Applicability of two different lanthanide-based label technologies, upconverting nanoparticles and switchable lanthanide luminescence, to protein detection was explored. Moreover, the potential of recombinant antibodies and aptamers as alternative affinity binders were evaluated. Additionally, alternative conjugation chemistries for production of the labeled binders were studied. Different assay concepts were also evaluated with respect to their applicability to point-of-care testing, which requires simple yet sensitive methods. The applicability of upconverting nanoparticles to the simultaneous quantitative measurement of multiple analytes using imaging-based detection was demonstrated. Additionally, the required instrumentation was relatively simple and inexpensive compared to other luminescent lanthanide-based labels requiring time-resolved measurement. The developed homogeneous assays exploiting switchable lanthanide luminescence were rapid and simple to perform and thus applicable even to point-ofcare testing. The sensitivities of the homogeneous assays were in the picomolar range, which are still inadequate for some analytes, such as cardiac troponins, requiring ultralow limits of detection. For most analytes, however, the obtained limits of detection were sufficient. The use of recombinant antibody fragments and aptamers as binders allowed site-specific and controlled covalent conjugation to construct labeled binders reproducibly either by using chemical modification or recombinant technology. Luminescent lanthanide labels were shown to be widely applicable for protein detection in various assay setups and to contribute assay sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the work presented in this study was to demonstrate the wide applicability of a single-label quenching resonance energy transfer (QRET) assay based on time-resolved lanthanide luminescence. QRET technology is proximity dependent method utilizing weak and unspecific interaction between soluble quencher molecule and lanthanide chelate. The interaction between quencher and chelate is lost when the ligand binds to its target molecule. The properties of QRET technology are especially useful in high throughput screening (HTS) assays. At the beginning of this study, only end-point type QRET technology was available. To enable efficient study of enzymatic reactions, the QRET technology was further developed to enable measurement of reaction kinetics. This was performed using proteindeoxyribonuclei acid (DNA) interaction as a first tool to monitor reaction kinetics. Later, the QRET was used to study nucleotide exchange reaction kinetics and mutation induced effects to the small GTPase activity. Small GTPases act as a molecular switch shifting between active GTP bound and inactive GDP bound conformation. The possibility of monitoring reaction kinetics using the QRET technology was evaluated using two homogeneous assays: a direct growth factor detection assay and a nucleotide exchange monitoring assay with small GTPases. To complete the list, a heterogeneous assay for monitoring GTP hydrolysis using small GTPases, was developed. All these small GTPase assays could be performed using nanomolar protein concentrations without GTPase pretreatment. The results from these studies demonstrated that QRET technology can be used to monitor reaction kinetics and further enable the possibility to use the same method for screening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Picornaviruses are the most common human viruses and the identification of the picornaviruses is nowadays based on molecular techniques, for example, reverse transcriptase polymerase chain reaction (RT-PCR). One aim of this thesis was to improve the identification of picornaviruses, especially rhino- and enteroviruses, with a real-time assay format and, also, to improve the differentiation of the viruses with genus-specific locked nucleic acid (LNA) probes. Another aim was to identify and study the causative agent of the enterovirus epidemics that appeared in Finland during seasons 2008-2010. In this thesis, the first version of picornavirus qRT-PCR with a melting curve analysis was used in a study of rhinovirus transmission within families with a rhinovirus positive index child where rhinovirus infection was monitored in all family members. In conclusion, rhinoviruses spread effectively within families causing mostly symptomatic infections in children and asymptomatic infections in adults. To improve the differentiation between rhino- and enterovirus the picornavirus qRT-PCR was modified with LNA-incorporated probes. The LNA probes were validated with picornavirus prototypes and different clinical specimen types. The LNA probe-based picornavirus qRT-PCR was able to differentiate all rhino- and enteroviruses correctly, which makes it suitable for diagnostic use. Moreover, in this thesis enterovirus outbreaks were studied with a well-observed method to create a strain-specific qRT-PCR from the typing region VP1 protein. In a hand-foot-and-mouth-disease (HFMD) outbreak in 2008, the causative agent was identified as CV-A6 and when the molecular evolution of the new HFMD CV-A6 strain was studied it was found that CV-A6 was the emerging agent for HFMD and onychomadesis. Furthermore, unusual E-30 meningitis epidemics that apeared during seasons 2009 and 2010 were studied with strain-specific qRT-PCR. The E-30 affected mostly adolescents and was probably spread in sports teams.