5 resultados para thermal resistance
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Tehokkaimpia keinoja vähentää rakennusten lämmitysenergian kulutusta ja lämmityksen aiheuttavia hiilidioksidi- ja happamoitavia päästöjä on tiukentaa rakentamismääräysten lämmöneristysvaatimuksia. Hyvin lämmöneristetyissä, tiiveissä ja ilmanvaihdoltaan optimoiduissa taloissa on pienet lämpöhäviöt. Näin ympäristöä kuormittava vaikutus saadaan paljon vähemmäksi kuin nykynormien mukaisissa asuinrakennuksissa. Johtumislämpöhäviö pienenee suoraan eristekerroksia paksuntamalla ja siihen on helpointa vaikuttaa. Mitä suurempiin eristepaksuuksiin mennään sen suuremmaksi tulee konvektion osuus kokonaislämpöhäviöstä. Tulevaisuudessa parempia ratkaisuja haetaan erityisesti konvektiosta ja säteilystä aiheutuvien lämpöhäviöiden pienentämiseksi. Eristeen osastointi ilmanpitävillä, vesihöyryä diffuusisesti läpäisevillä pystysuuntaisilla konvektiokatkoilla vähentää tehokkaasti paksun seinäeristeen kuljettumis-ilmavirtauksia. Katkoina käytetään erilaisia kalvoja ja rakennuspapereita, joilla on pieni emissiviteetti. Katkojen merkitys kasvaa, kun mennään uusien normien mukaisiin eristepaksuuksiin. Lämmöneriste voidaan toteuttaa myös kokoamalla ohuita kalvoja paketiksi, jotka jakavat ilmatilan ja siis eristeelle varatun paksuuden suljettuihin ilmaväleihin. Kun kalvoiksi valitaan pieniemissiviteettisiä pintoja, saadaan säteilylämmönsiirto lähes eliminoiduksi. Tällaisen ilmatilan lämmönjohtumisluku lähestyy paikallaan pysyvän ilman lämmönjohtumislukua, l = 0,025 W/Km, eli tällä rakennesysteemillä on mahdollista toteuttaa ohuempia rakenteita kuin perinteisillä eristeillä. Hygroskooppisen massan käyttö sisäilman kosteutta tasaavana rakenteena voi olla tulevaisuutta. Kehitystyö tuottaa uusia, kosteusteknisesti toimivia sovelluksia. Toisaalta palomääräykset tulevat kehitystyötä vastaan. Hygroskooppinen pintamateriaali on kevyt (pieni tiheys) ja paloteknisesti arka. Suoraa sähkölämmitystä ei voida pitää ympäristöystävällisenä. Sen jalostusketju on pitkä ja monivaiheinen. Millä peruspolttoaineella sähköä tuotetaan, vaikuttaa asiaan luonnollisestikin. Suoraa sähkölämmitystä voidaan suositella vain yksinäisen ihmisen taloudessa lämmitysmuotona taloudellisista syistä. Halvan polttoaineen säästöllä ei voida maksaa suuria laiteinvestointeja. Aurinkoenergian hyvä hyödyntäminen edellyttää hyvää säätöä, joka kytkee lämmityksen pois päältä silloin, kun aurinko lämmittää. Auringon hetkelliset säteilytehot ovat suuria verrattuna rakenteen lämpöhäviöihin ja huonetilojen lämmöntarpeeseen. Ratkaisu aurinkoenergian hetkellisyyteen ja paikallisuuteen on energian siirtäminen lämmöntarpeen mukaan rakennuksen eri osiin ja sen varastoiminen päivätasolla. Kun varastoivasta massasta ei ole suoraa yhteyttä ulos, voidaan kerääjäeristeeltä saatu lämpö käyttää häviöttömästi huonetilojen lämmittämiseen. Vaikka lämmitysenergian käytössä päästään 30 % vähennyksiin uudisrakennusten osalta, ei kokonaisenergian käyttö merkittävästi pienene, jos taloussähkön kulutus pysyy vakiona. Sama pätee myös CO2 -päästöihin. Saavutettava etu lämmitys-energian kulutuksessa voidaan hukata yhä suurenevaksi taloussähkön käytöksi, mikä olisi erityisen huono asia ympäristön kannalta.
Polttoaineseoksen ja prosessiolosuhteiden vaikutus kerrosleijukattilan tulistinalueen likaantumiseen
Resumo:
Työn tavoitteena oli löytää yhteys kerrosleijukattilaan syötetyn polttoaineseoksen sekä kattilan likaantumisen välille. Tulistinalueen likaantumista tutkittiin kahden kerrostumasondin avulla 28 päivää kestäneellä mittausjaksolla. Mittausten aikana otettiin näytteitä polttoaineseoksesta, lentotuhkasta sekä nuohouksen aikaisesta tuhkavirrasta. Mittausjakson jälkeen myös sondien tuhkakerrostumien pitoisuudet määritettiin. Mittausjakson aikana sondien jättöpinnoille muodostui tuhkakerrostumaa, joka voitiin poistaa nuohouksella, kun taas tulopinnalle syntyi pysyvää kerrostumaa. Nuohouksella irtoavan tuhkakerrostuman havaittiin sisältävän suuremmat pitoisuudet piitä, alumiinia, natriumia ja kaliumia kuin kattilan läpi jatkuvasti kulkevan lentotuhkan. Tuhkakerrostuma, jota ei nuohouksella saatu poistettua, sisälsi enemmän natriumia, rikkiä, kaliumia ja lyijyä kuin muut tuhkanäytteet. Polttoaineista turpeella oli merkittävin vaikutus likaantumiseen. Turpeen osuuden ollessa suurimmillaan jäivät jättöpinnan tuhkakerrostuman lämpövastukset pienemmiksi kuin muulloin eli lyhytaikaista kerrostumaa syntyi tällöin vähemmän. Pysyvän kerrostuman kasvu hidastui, kun turpeen osuus oli suuri, ja jopa pysähtyi, kun turpeen osuus oli 42-51 %. Prosessiolosuhteista tutkittiin kattilan kuorman vaikutusta likaantumiseen. Havaittiin, että ajettaessa kattilaa isommilla kuormilla, syntyi lyhytaikaista kerrostumaa vähemmän kuin muulloin.
Resumo:
Vaihtosuuntaajan IGBT-moduulin liitosten lämpötiloja ei voida suoraan mitata, joten niiden arviointiin tarvitaan reaaliaikainen lämpömalli. Tässä työssä on tavoitteena kehittää tähän tarkoitukseen C-kielellä implementoitu ratkaisu, joka on riittävän tarkka ja samalla mahdollisimman laskennallisesti tehokas. Ohjelmallisen toteutuksen täytyy myös sopia erilaisille moduulityypeille ja sen on tarvittaessa otettava huomioon saman moduulin muiden sirujen lämmittävä vaikutus toisiinsa. Kirjallisuuskatsauksen perusteella valitaan olemassa olevista lämpömalleista käytännön toteutuksen pohjaksi lämpöimpedanssimatriisiin perustuva malli. Lämpöimpedanssimatriisista tehdään Simulink-ohjelmalla s-tason simulointimalli, jota käytetään referenssinä muun muassa implementoinnin tarkkuuden verifiointiin. Lämpömalli tarvitsee tiedon vaihtosuuntaajan häviöistä, joten työssä on selvitetty eri vaihtoehtoja häviölaskentaan. Lämpömallin kehittäminen s-tason mallista valmiiksi C-kieliseksi koodiksi on kuvattu tarkasti. Ensin s-tason malli diskretoidaan z-tasoon. Z-tason siirtofunktiot muutetaan puolestaan ensimmäisen kertaluvun differenssiyhtälöiksi. Työssä kehitetty monen aikatason lämpömalli saadaan jakamalla ensimmäisen kertaluvun differenssiyhtälöt eri aikatasoille suoritettavaksi sen mukaan, mikä niiden kuvaileman termin vaatima päivitysnopeus on. Tällainen toteutus voi parhaimmillaan kuluttaa alle viidesosan kellojaksoja verrattuna suoraviivaiseen yhden aikatason toteutukseen. Implementoinnin tarkkuus on hyvä. Implementoinnin vaatimia suoritusaikoja testattiin Texas Instrumentsin TMS320C6727- prosessorilla (300 MHz). Esimerkkimallin laskemisen määritettiin kuluttavan vaihtosuuntaajan toimiessa 5 kHz kytkentätaajuudella vain 0,4 % prosessorin kellojaksoista. Toteutuksen tarkkuus ja laskentakapasiteetin vähäinen vaatimus mahdollistavat lämpömallin käyttämisen lämpösuojaukseen ja lisäämisen osaksi muuta jo prosessorilla olemassa olevaa systeemiä.
Resumo:
Tässä väitöskirjassa tarkastellaan suurnopeustekniikan eri sovelluksissa ilmeneviä roottoreihin liittyviä rakenteellisia vaatimuksia ja haasteita. Tässä yhteydessä suurnopeustekniikalla tarkoitetaan järjestelyä, jossa sähkökone (moottori, generaattori) ja toimilaite (turbiini, kompressori, puhallin) on kytketty ilman vaihdetta suoraan mekaanisesti yhteen ja jossa yhteisen roottorin pyörimisnopeus on selvästi suurempi kuin 50/60 hertsin verkosta syötetyn kaksinapaisen vaihtovirtasähkökoneen tahtinopeus. Tyypillistä suurnopeuskoneen roottorille on suuri tehotiheys ja suuri mekaaninen kuormitus. Siksi esimerkiksi sähkökoneen jäähdytys on entistä haasteellisempaa kasvavien rautahäviöiden ja pienempien lämmönsiirtopinta-alojen vuoksi. Tämän työn tavoitteet voidaan jakaa kolmeen osaan: Yhdistetyn sähkö- ja turbokoneen roottorin mekaanisen rakenteen tarkastelu, jonka tavoitteena on pienentää lämmönkehitystä ja tehostaa kriittisten kohtien jäähdytystä. Tähän liittyy sähkömagneettisten häviöiden keskittäminen jäähdytyksen kannalta edullisiin kohtiin Yhdistetyn sähkö- ja turbokoneen roottorin mekaanisen rakenteen tarkastelu kriittisten ominaistaajuuksien kannalta Yhdistetyn sähkö- ja turbokoneen roottorin mekaanisen rakenteen analysointi lujuustekniseltä kannalta. Tähän liittyvät mm. erilaiset ahdistussovitteet ja niiden säilyminen korkeilla pyörimisnopeuksilla sekä niiden roottoria jäykistävä vaikutus ja lämmön johtuminen kyseisissä liitospinnoissa. Tämän työn tieteellinen uutuusarvo on nimenomaan yhdistetyn sähkö- ja turbokoneen roottorin rakenteen analysointi ottamalla samanaikaisesti huomioon kaikki edellä mainitut näkökohdat: jäähtyminen erityisen kuumissa kohdissa, sähköisten häviöiden alentaminen ja niiden jakautuman huomioon ottaminen, roottorin jäykkyyden maksimointi, lujuusrasitusten hallinta ja rakenteen mekaaninen stabiliteetti sekä lämpöteknisten ylimenovastusten tarkastelu.
Electromagnetic and thermal design of a multilevel converter with high power density and reliability
Resumo:
Electric energy demand has been growing constantly as the global population increases. To avoid electric energy shortage, renewable energy sources and energy conservation are emphasized all over the world. The role of power electronics in energy saving and development of renewable energy systems is significant. Power electronics is applied in wind, solar, fuel cell, and micro turbine energy systems for the energy conversion and control. The use of power electronics introduces an energy saving potential in such applications as motors, lighting, home appliances, and consumer electronics. Despite the advantages of power converters, their penetration into the market requires that they have a set of characteristics such as high reliability and power density, cost effectiveness, and low weight, which are dictated by the emerging applications. In association with the increasing requirements, the design of the power converter is becoming more complicated, and thus, a multidisciplinary approach to the modelling of the converter is required. In this doctoral dissertation, methods and models are developed for the design of a multilevel power converter and the analysis of the related electromagnetic, thermal, and reliability issues. The focus is on the design of the main circuit. The electromagnetic model of the laminated busbar system and the IGBT modules is established with the aim of minimizing the stray inductance of the commutation loops that degrade the converter power capability. The circular busbar system is proposed to achieve equal current sharing among parallel-connected devices and implemented in the non-destructive test set-up. In addition to the electromagnetic model, a thermal model of the laminated busbar system is developed based on a lumped parameter thermal model. The temperature and temperature-dependent power losses of the busbars are estimated by the proposed algorithm. The Joule losses produced by non-sinusoidal currents flowing through the busbars in the converter are estimated taking into account the skin and proximity effects, which have a strong influence on the AC resistance of the busbars. The lifetime estimation algorithm was implemented to investigate the influence of the cooling solution on the reliability of the IGBT modules. As efficient cooling solutions have a low thermal inertia, they cause excessive temperature cycling of the IGBTs. Thus, a reliability analysis is required when selecting the cooling solutions for a particular application. The control of the cooling solution based on the use of a heat flux sensor is proposed to reduce the amplitude of the temperature cycles. The developed methods and models are verified experimentally by a laboratory prototype.