2 resultados para test de ratio des variances
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The purpose of this master thesis was to perform simulations that involve use of random number while testing hypotheses especially on two samples populations being compared weather by their means, variances or Sharpe ratios. Specifically, we simulated some well known distributions by Matlab and check out the accuracy of an hypothesis testing. Furthermore, we went deeper and check what could happen once the bootstrapping method as described by Effrons is applied on the simulated data. In addition to that, one well known RobustSharpe hypothesis testing stated in the paper of Ledoit and Wolf was applied to measure the statistical significance performance between two investment founds basing on testing weather there is a statistically significant difference between their Sharpe Ratios or not. We collected many literatures about our topic and perform by Matlab many simulated random numbers as possible to put out our purpose; As results we come out with a good understanding that testing are not always accurate; for instance while testing weather two normal distributed random vectors come from the same normal distribution. The Jacque-Berra test for normality showed that for the normal random vector r1 and r2, only 94,7% and 95,7% respectively are coming from normal distribution in contrast 5,3% and 4,3% failed to shown the truth already known; but when we introduce the bootstrapping methods by Effrons while estimating pvalues where the hypothesis decision is based, the accuracy of the test was 100% successful. From the above results the reports showed that bootstrapping methods while testing or estimating some statistics should always considered because at most cases the outcome are accurate and errors are minimized in the computation. Also the RobustSharpe test which is known to use one of the bootstrapping methods, studentised one, were applied first on different simulated data including distribution of many kind and different shape secondly, on real data, Hedge and Mutual funds. The test performed quite well to agree with the existence of statistical significance difference between their Sharpe ratios as described in the paper of Ledoit andWolf.
Resumo:
This thesis investigates the effectiveness of time-varying hedging during the financial crisis of 2007 and the European Debt Crisis of 2010. In addition, the seven test economies are part of the European Monetary Union and these countries are in different economical states. Time-varying hedge ratio was constructed using conditional variances and correlations, which were created by using multivariate GARCH models. Here we have used three different underlying portfolios: national equity markets, government bond markets and the combination of these two. These underlying portfolios were hedged by using credit default swaps. Empirical part includes the in-sample and out-of-sample analysis, which are constructed by using constant and dynamic models. Moreover, almost in every case dynamic models outperform the constant ones in the determination of the hedge ratio. We could not find any statistically significant evidence to support the use of asymmetric dynamic conditional correlation model. In addition, our findings are in line with prior literature and support the use of time-varying hedge ratio. Finally, we found that in some cases credit default swaps are not suitable instruments for hedging and they act more as a speculative instrument.