14 resultados para structural and physicochemical characteristics
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Multifunktionella kiseldioxidnanopartiklar har en bred tillämpning inom nanomedicin. En attraktiv kombination är samtidig läkemedelstillförsel och spårning av nanopartiklarna, vilket är känt som ”teranostik”. Genom kontrollerad design av kiseldioxidnanopartiklarna kan terapi och diagnostik på detta sätt kombineras i samma partikel. För en lyckad användning av nanopartiklar inom nanomedicin måste deras fysikalisk-kemiska egenskaper vara välkontrollerade för att kunna förutspå deras beteende i biologiska system. I denna studie tillverkades kiseldioxidnanopartiklar med varierande storlek, form, yta och sammansättning med fokus på att utrusta nanopartiklarna med multifunktionalitet och på så sätt främja deras användning inom biomedicinska tillämpningar. Kiseldioxidnanopartiklar med sfäriska och stav-liknande former, porösa, icke-porösa och ihåliga strukturer tillverkades. De erhållna resultaten visade att nanopartiklarnas form har större inverkan på upptaget i celler jämfört med effekten av deras ytladdning. Nanopartiklarnas dispersionsstabilitet är en annan viktig aspekt för både diagnostiska och terapeutiska tillämpningar. Genom att ändra kiseldioxidnanopartiklarnas fysikalisk-kemiska ytegenskaper med ytfunktionalisering, bedömdes dispersionstabiliteten av nanopartiklarna. Nanopartiklarnas ytsammansättning justerades och skillnader i dispergerbarhet och dispersionsstabilitet undersöktes i biologiskt medium. Inom terapeutiska tillämpningar är målsökande läkemedelsfyllda nanopartiklar en lovande taktik som medför lägre läkemedelsdoser och minskar sidoeffekterna. I denna avhandling designades mesoporösa kiseldioxidnanopartiklar för användning som målsökande läkemedelsbärare. Dessa partiklar laddades med ett potentiellt anti-cancer läkemedel. En klart högre apoptotisk effekt kunde påvisas med de läkemedelsfyllda partiklarna jämfört med fri drog in vitro. En viktig egenskap för sådana multifunktionella nanopartiklar är också att kunna spåra dem under läkemedelsfrisättningen i biologisk miljö med olika bildåtergivningsmetoder. Detta kan uppnås genom att infoga en markör i kiseldioxidnätverket. Kiseldioxidnanopartiklarnas bildåtergivningsförmåga modifierades på olika sätt och inverkan på detekterbarheten analyserades med fluorescerande metoder och med magnetisk resonanstomografi. Denna avhandling lyfter fram de kritiska parametrarna vid syntes av kiseldioxidnanopartiklar för teranostiska tillämpningar. Olika metoder undersöktes för att erhålla skräddarsydda nanopartiklar. Detta arbete bidrar med en djup insikt i hur nanopartiklarnas fysikalisk-kemiska egenskaper påverkar deras beteende i biologisk miljö, och arbetet kan därför fungera som riktlinje för att designa säkra och effektiva nanomediciner.
Resumo:
Glutathione transferases (GSTs) are a diverse family of enzymes that catalyze the glutathione-dependent detoxification of toxic compounds. GSTs are responsible for the conjugation of the tripeptide glutathione (GSH) to a wide range of electrophilic substrates. These include industrial pollutants, drugs, genotoxic carcinogen metabolites, antibiotics, insecticides and herbicides. In light of applications in biomedicine and biotechnology as cellular detoxification agents, detailed structural and functional studies of GSTs are required. Plant tau class GSTs play crucial catalytic and non-catalytic roles in cellular xenobiotic detoxification process in agronomically important crops. The abundant existence of GSTs in Glycine max and their ability to provide resistance to abiotic and biotic stresses such as herbicide tolerance is of great interest in agriculture because they provide effective and suitable tools for selective weed control. Structural and catalytic studies on tau class GST isoenzymes from Glycine max (GmGSTU10-10, GmGSTU chimeric clone 14 (Sh14), and GmGSTU2-2) were performed. Crystal structures of GmGSTU10-10 in complex with glutathione sulfenic acid (GSOH) and Sh14 in complex with S-(p-nitrobenzyl)-glutathione (Nb-GSH) were determined by molecular replacement at 1.6 Å and 1.75 Å, respectively. Major structural variations that affect substrate recognition and catalytic mechanism were revealed in the upper part of helix H4 and helix H9 of GmGSTU10-10. Structural analysis of Sh14 showed that the Trp114Cys point mutation is responsible for the enhanced catalytic activity of the enzyme. Furthermore, two salt bridges that trigger an allosteric effect between the H-sites were identified at the dimer interface between Glu66 and Lys104. The 3D structure of GmGSTU2-2 was predicted using homology modeling. Structural and phylogenetic analysis suggested GmGSTU2-2 shares residues that are crucial for the catalytic activity of other tau class GSTs–Phe10, Trp11, Ser13, Arg20, Tyr30, Leu37, Lys40, Lys53, Ile54, Glu66 and Ser67. This indicates that the catalytic and ligand binding site in GmGSTU2-2 are well-conserved. Nevertheless, at the ligandin binding site a significant variation was observed. Tyr32 is replaced by Ser32 in GmGSTU2-2 and thismay affect the ligand recognition and binding properties of GmGSTU2-2. Moreover, docking studies revealed important amino acid residues in the hydrophobic binding site that can affect the substrate specificity of the enzyme. Phe10, Pro12, Phe15, Leu37, Phe107, Trp114, Trp163, Phe208, Ile212, and Phe216 could form the hydrophobic ligand binding site and bind fluorodifen. Additionally, side chains of Arg111 and Lys215 could stabilize the binding through hydrogen bonds with the –NO2 groups of fluorodifen. GST gene family from the pathogenic soil bacterium Agrobacterium tumefaciens C58 was characterized and eight GST-like proteins in A. tumefaciens (AtuGSTs) were identified. Phylogenetic analysis revealed that four members of AtuGSTs belong to a previously recognized bacterial beta GST class and one member to theta class. Nevertheless, three AtuGSTs do not belong to any previously known GST classes. The 3D structures of AtuGSTs were predicted using homology modeling. Comparative structural and sequence analysis of the AtuGSTs showed local sequence and structural characteristics between different GST isoenzymes and classes. Interactions at the G-site are conserved, however, significant variations were seen at the active site and the H5b helix at the C-terminal domain. H5b contributes to the formation of the hydrophobic ligand binding site and is responsible for recognition of the electrophilic moiety of the xenobiotic. It is noted that the position of H5b varies among models, thus providing different specificities. Moreover, AtuGSTs appear to form functional dimers through diverse modes. AtuGST1, AtuGST3, AtuGST4 and AtuGST8 use hydrophobic ‘lock–and–key’-like motifs whereas the dimer interface of AtuGST2, AtuGST5, AtuGST6 and AtuGST7 is dominated by polar interactions. These results suggested that AtuGSTs could be involved in a broad range of biological functions including stress tolerance and detoxification of toxic compounds.
Resumo:
Abstract
Resumo:
Selostus: Typpilannoituksen ja nostoajankohdan vaikutus varhaisperunan satoon
Resumo:
The goal of the thesis was to study fundamental structural and optical properties of InAs islands and In(Ga)As quantum rings. The research was carried out at the Department of Micro and Nanosciences of Helsinki University of Technology. A good surface quality can be essential for the potential applications in optoelectronic devices. For such device applications it is usually necessary to control size, density and arrangement of the islands. In order to study the dependence of the structural properties of the islands and the quantum rings on growth conditions, atomic force microscope was used. Obtained results reveal that the size and the density of the In(Ga)As quantum rings strongly depend on the growth temperature, the annealing time and the thickness of the partial capping layer. From obtained results it is possible to conclude that to get round shape islands and high density one has to use growth temperature of 500 ̊C. In the case of formation of In(Ga)As quantum rings the effect of mobility anisotropy is observed that so the shape of the rings is not symmetric. To exclude this effect it is preferable to use a higher annealing temperature of 570 ̊C. Optical properties were characterized by PL spectroscopy. PL emission was observed from buried InAs quantum dots and In(Ga)As quantum rings grown with different annealing time and temperature and covered with a various thickness of the partial capping layer.
Resumo:
The aim of this investigation was to analyze the dental occlusion in the deciduous dentition, and the effects of orthodontic treatment carried out in the early mixed dentition with the eruption guidance appliance. The deciduous occlusion and craniofacial morphology of 486 children (244 girls and 242 boys) were investigated at the onset of the mixed dentition period (mean age 5.1 years, range 4.0-7.8 years). Treatment in the treatment group and follow-up in the control group were started when the first deciduous incisor was exfoliated (T1) and ended when all permanent incisors and first molars were fully erupted (T2). The mean age of the children was 5.1 years (SD 0.5) at T1 and 8.4 years (SD 0.5) at T2. Treatment was carried out with the eruption guidance appliance. Occlusal changes that took place in 167 children were compared with those of 104 untreated control children. Pre- and post-treatment cephalometric radiographs were taken, and the craniofacial morphology of 115 consecutively treated children was compared with that of 104 control children. The prevalence of malocclusion in the deciduous dentition was 68% or 93% depending on how the cut-off value between the acceptable and non-acceptable occlusal characteristic was defined. The early dentofacial features of children with distal occlusion, large overjet and deepbite differed from those with normal occlusion. However, the skeletal pattern of these three malocclusions showed considerable similarity each being characterized by a retrusive mandible, small maxillo-mandibular difference, convex profile, retrusive lower incisors, and large interincisal angle. In the treatment group, overjet and overbite decreased significantly from T1 to T2. Following treatment, a tooth-to-tooth contact was found in 99% of the treated children but only in 24% of the controls. A Class I molar relationship was observed in 90% of the children in the treatment group, and in 48% in the control group. Good alignment of the incisors was observed in 98% of the treated children, whereas upper crowding was found in 32% and lower crowding in 47% of the controls. A significant difference between the groups was found in the mandibular length, midfacial length and maxillo-mandibular differential. The occlusal correction, brought about by the eruption guidance appliance, was achieved mainly through changes in the dentoalveolar region of the mandible. In addition, the appliance seemed to enhance the growth of the mandible. Treatment in the early mixed dentition using the eruption guidance appliance is an effective method to normalize occlusion and reduce further need of orthodontic treatment. Only few spontaneous corrective changes can be expected without active intervention.
Resumo:
The objective of this thesis was to identify the effects of different factors on the tension and tension relaxation of wet paper web after high-speed straining. The study was motivated by the plausible connection between wet web mechanical properties and wet web runnability on paper machines shown by previous studies. The mechanical properties of wet paper were examined using a fast tensile test rig with a strain rate of 1000%/s. Most of the tests were carried out with laboratory handsheets, but samples from a pilot paper machine were also used. The tension relaxation of paper was evaluated as the tension remaining after 0.475 s of relaxation (residual tension). The tensile and relaxation properties of wet webs were found to be strongly dependent on the quality and amount of fines. With low fines content, the tensile strength and residual tension of wet paper was mainly determined by the mechanical interactions between fibres at their contact points. As the fines strengthen the mechanical interaction in the network, the fibre properties also become important. Fibre deformations caused by the mechanical treatment of pulp were shown to reduce the mechanical properties of both dry and wet paper. However, the effect was significantly higher for wet paper. An increase of filler content from 10% to 25% greatly reduced the tensile strength of dry paper, but did not significantly impair wet web tensile strength or residual tension. Increased filler content in wet web was shown to increase the dryness of the wet web after the press section, which partly compensates for the reduction of fibrous material in the web. It is also presumable that fillers increase entanglement friction between fibres, which is beneficial for wet web strength. Different contaminants present in white water during sheet formation resulted in lowered surface tension and increased dryness after wet pressing. The addition of different contaminants reduced the tensile strength of the dry paper. The reduction of dry paper tensile strength could not be explained by the reduced surface tension, but rather on the tendency of different contaminants to interfere with the inter-fibre bonding. Additionally, wet web strength was not affected by the changes in the surface tension of white water or possible changes in the hydrophilicity of fibres caused by the addition of different contaminants. The spraying of different polymers on wet paper before wet pressing had a significant effect on both dry and wet web tensile strength, whereas wet web elastic modulus and residual tension were basically not affected. We suggest that the increase of dry and wet paper strength could be affected by the molecular level interactions between these chemicals and fibres. The most significant increases in dry and wet paper strength were achieved with a dual application of anionic and cationic polymers. Furthermore, selectively adding papermaking chemicals to different fibre fractions (as opposed to adding chemicals to the whole pulp) improved the wet web mechanical properties and the drainage of the pulp suspension.
Resumo:
Background: Atherosclerosis begins in early life progressing from asymptomatic to symptomatic as we age. Although substantial progress has been made in identifying the determinants of atherosclerosis in middle to older age adults at increased cardiovascular risk, there is lack of data examining determinants and prediction of atherosclerosis in young adults. Aims: The current study was designed to investigate levels of cardiovascular risk factors in young adults, subclinical measures of atherosclerosis, and prediction of subclinical arterial changes with conventional risk factor measures and novel metabolic profiling of serum samples. Subjects and Methods: This thesis utilised data from the follow-ups performed in 2001 and 2007 in the Cardiovascular Risk in Young Finns study, a Finnish population-based prospective cohort study that examined 2,204 subjects who were aged 30-45 years in 2007. Subclinical atherosclerosis was studied using noninvasive ultrasound measurements of carotid intima-media thickness (IMT), carotid arterial distensibility (CDist) and brachial flow-mediated dilation (FMD). Measurements included conventional risk factors and metabolic profiling using highthroughput nuclear magnetic resonance (NMR) methods that provided data on 42 lipid markers and 16 circulating metabolites. Results: Trends in lipids were favourable between 2001 and 2007, whereas waist circumference, fasting glucose, and blood pressure levels increased. To study the stability of noninvasive ultrasound markers, 6-year tracking (the likelihood to maintain the original fractile over time) in 6 years was examined. IMT tracked more strongly than CDist and FMD. Cardiovascular risk scores (Framingham, SCORE, Finrisk, Reynolds and PROCAM) predicted subclinical atherosclerosis equally. Lipoprotein subclass testing did not improve the prediction of subclinical atherosclerosis over and above conventional risk factors. However, circulating metabolites improved risk stratification. Tyrosine and docosahexaenoic acid were found to be novel biomarkers of high IMT. Conclusions: Prediction of cardiovascular risk in young Finnish adults can be performed with any of the existing risk scores. The addition of metabonomics to risk stratification improves prediction of subclinical changes and enables more accurate targeting of prevention at an early stage.
DPS-Like Peroxide Resistance Protein: Structural and Functional Studies on a Versatile Nanocontainer
Resumo:
Oxidative stress is a constant threat to almost all organisms. It damages a number of biomolecules and leads to the disruption of many crucial cellular functions. It is caused by reactive oxygen species (ROS), such as hydrogen peroxide (H
Resumo:
In this work mathematical programming models for structural and operational optimisation of energy systems are developed and applied to a selection of energy technology problems. The studied cases are taken from industrial processes and from large regional energy distribution systems. The models are based on Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MINLP) and on a hybrid approach of a combination of Non-Linear Programming (NLP) and Genetic Algorithms (GA). The optimisation of the structure and operation of energy systems in urban regions is treated in the work. Firstly, distributed energy systems (DES) with different energy conversion units and annual variations of consumer heating and electricity demands are considered. Secondly, district cooling systems (DCS) with cooling demands for a large number of consumers are studied, with respect to a long term planning perspective regarding to given predictions of the consumer cooling demand development in a region. The work comprises also the development of applications for heat recovery systems (HRS), where paper machine dryer section HRS is taken as an illustrative example. The heat sources in these systems are moist air streams. Models are developed for different types of equipment price functions. The approach is based on partitioning of the overall temperature range of the system into a number of temperature intervals in order to take into account the strong nonlinearities due to condensation in the heat recovery exchangers. The influence of parameter variations on the solutions of heat recovery systems is analysed firstly by varying cost factors and secondly by varying process parameters. Point-optimal solutions by a fixed parameter approach are compared to robust solutions with given parameter variation ranges. In the work enhanced utilisation of excess heat in heat recovery systems with impingement drying, electricity generation with low grade excess heat and the use of absorption heat transformers to elevate a stream temperature above the excess heat temperature are also studied.
Resumo:
SStrong evidence suggests that the climate is changing and that these changes are largely caused by human activities. A consensus exists among researchers that human activity is causing global warming and that actions to mitigate global warming need to be taken swiftly. The transportation sector, which relies heavily on fossil fuel burning and primarily oil, is one of the big contributors to air pollution problems at local, regional and global levels. It is the fastest growing source of greenhouse gas emissions and is estimated to be responsible for nearly a quarter of global energyrelated carbon dioxide emissions. Car sharing is a mobility solution encouraging its users to decrease private car usage in favour of communal transit and environmental goals. The idea of car sharing originates from the aspiration to decrease personal car ownership and to reduce vehicle distance travelled. This thesis seeks to complement the understanding of Finnish car sharing users and their usage through better categorization. Through better categorization and segmentation of Finnish car sharing users the thesis seeks to provide information for improved marketing insight. Research is done on the demographic and behavioural characteristics of Finnish car sharing users and they are compared with international findings about the characteristics of International car sharing users. The main research problem is Are Finnish car sharing users similar to international ones? A theoretical research framework on the determinants of individual car sharing usage is built based on international research about demographic and behaviouristic characteristics. After this a quantitative survey is performed to the customers of a Finnish car sharing organization. The data analysed in the thesis consist out of 532 answers received from the car sharing organizations customers. The data is analysed with descriptive and other exploratory methods, which create an understanding of Finnish car sharing users. At the end of the analysis the demographic and behavioural characteristics of Finnish car sharing users are compared with international ones. The research findings of the thesis indicate that the demographic and behavioural characteristics of Finnish car sharing usage largely follow those of their international counterparts. Thanks to the thesis results the car sharing organization is able to better target their customers through improved marketing insight.
Resumo:
Polyketides are a diverse group of natural products produced in many bacteria, fungi and plants. These metabolites have diverse biological activities and several members of this group are in clinical use as antibiotics, anticancer agents, antifungals and immunosuppressants. The different polyketides are produced by polyketide synthases, which catalyze the condensation of extender units into various polyketide scaffolds. After the biosynthesis of the polyketide backbone, more versatility is created to the molecule by tailoring enzymes catalyzing for instance hydroxylations, methylations and glycosylations. Flavoprotein monooxygenases (FPMO) and short-chain alcohol dehydrogenases/reductases (SDR) are two enzyme families that catalyze unusual tailoring reactions in the biosynthesis of natural products. In the experimental section, functions of homologous FPMO and SDR tailoring enzymes from five different angucycline pathways were studied in vitro. The results revealed how different angucyclinones are produced from a common intermediate and that FPMO JadH and SDR LanV are responsible for the divergence of jadomycins and landomycins, respectively, from other angucyclines. Structural studies of these tailoring enzymes revealed differences between homologous enzymes and enabled the use of structure-based protein engineering. Mutagenesis experiments gave important information about the enzymes behind the evolution of distinct angucycline metabolites. These experiments revealed a correlation between the substrate inhibition and bi-functionality in JadH homologue PgaE. In the case of LanV, analysis of mutagenesis results revealed that the difference between the stereospecificities of LanV and its homologues CabV and UrdMred is unexpectedly related to the conformation of the substrate rather than to the structure of the enzyme. Altogether, the results presented here have improved our knowledge about different steps of angucycline biosynthesis and the reaction mechanisms used by the tailoring enzymes behind these steps. This information can hopefully be used to modify these enzymes to produce novel metabolites, which have new biological targets or possess novel modes-of-action. The understanding of these unusual enzyme mechanisms is also interesting to enzymologists outside the field of natural product research.
Resumo:
Symbolic dynamics is a branch of mathematics that studies the structure of infinite sequences of symbols, or in the multidimensional case, infinite grids of symbols. Classes of such sequences and grids defined by collections of forbidden patterns are called subshifts, and subshifts of finite type are defined by finitely many forbidden patterns. The simplest examples of multidimensional subshifts are sets of Wang tilings, infinite arrangements of square tiles with colored edges, where adjacent edges must have the same color. Multidimensional symbolic dynamics has strong connections to computability theory, since most of the basic properties of subshifts cannot be recognized by computer programs, but are instead characterized by some higher-level notion of computability. This dissertation focuses on the structure of multidimensional subshifts, and the ways in which it relates to their computational properties. In the first part, we study the subpattern posets and Cantor-Bendixson ranks of countable subshifts of finite type, which can be seen as measures of their structural complexity. We show, by explicitly constructing subshifts with the desired properties, that both notions are essentially restricted only by computability conditions. In the second part of the dissertation, we study different methods of defining (classes of ) multidimensional subshifts, and how they relate to each other and existing methods. We present definitions that use monadic second-order logic, a more restricted kind of logical quantification called quantifier extension, and multi-headed finite state machines. Two of the definitions give rise to hierarchies of subshift classes, which are a priori infinite, but which we show to collapse into finitely many levels. The quantifier extension provides insight to the somewhat mysterious class of multidimensional sofic subshifts, since we prove a characterization for the class of subshifts that can extend a sofic subshift into a nonsofic one.
Resumo:
Phosphoserine aminotrasferase (PSAT: EC 2.6.1.52) is a vitamin B6-dependent enzyme and a member of the subgroup IV in the aminotransferase superfamily. Here, X-ray crystallography was used to determine the structure of PSAT from Bacillus alcalophilus with pyridoxamine 5′-phosphate (PMP) at high resolution (1.57 Å). In addition, analysis of active residues and their conformational changes was performed. The structure is of good quality as indicated, for example, by the last recorded Rwork and Rfree numbers (0.1331 and 0.1495, respectively). The enzyme was initially crystallized in the presence of substrate L-glutamate with the idea to produce the enzyme-substrate complex. However, the structure determination revealed no glutamate bound at the active site. Instead, the Schiff base between Lys196 and PLP appeared broken, resulting in the formation of PMP owing to the excess of the donor substrate used during co-crystallization. Structural comparison with the free PSAT enzyme and the PSAR-PSER complex showed that the aromatic ring of the co-factor remains in almost the same place in all structures. A flexible nearby loop in the active site was found in the same position as in the free PSAT structure while in the PSAT-PSER structure it moves inwards to interact with PSER. B-factors comparison in all three structures (PSAT-PMP complex, free PSAT, and PSAT-PSER complex) showed elevated loop flexibility in the absence of the substrate, indicating that loop flexibility plays an important role during substrate binding. The reported structure provides mechanistic details into the reaction mechanism of PSAT and may help in understanding better the role of various parts in the structure towards the design of novel compounds as potential disruptors of PSAT function. This may lead to the development of new drugs which could target the human and bacterial PSAT active site.