3 resultados para solitary bee and wasps

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Selostus: Mehiläisen sisuspunkin aiheuttamat tuhot ja esiintyminen Suomessa

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurofibromatosis type 1 (NF1) is an autosomal dominant cancer predisposition syndrome that affects about 1 in 3500 individuals worldwide. NF1 is caused by mutations in the NF1 gene that encodes the tumor suppressor protein neurofibromin, an inactivator of the Ras oncogene. The hallmarks of NF1 include pigmentary lesions of the skin, Lisch nodules of the iris and cutaneous neurofibromas. Cutaneous neurofibromas are benign tumors composed of all the cell types of normal peripheral nerve. The traditional view of neurofibroma development has been that cutaneous neurofibromas arise from the disruption of the small nerve tributaries of the skin and subsequent proliferation of the resident cells. The second hit mutation in the NF1 gene has been considered as a prerequisite for neurofibroma development. The second hit is detectable in a subpopulation of primary Schwann cells cultured from neurofibromas. This thesis challenges the traditional concept of neurofibroma development. The results show that cutaneous neurofibromas are intimately associated with hair follicular structures and contain multipotent precursor cells (NFPs), suggesting that neurofibromas may arise from the multipotent cells which reside in hair follicles. Furthermore, this study presents that neurofibroma-derived Schwann cells that harbor bi-allelic inactivation in the NF1 gene express HLA class II genes and may act as nonprofessional antigen presenting cells. The CD4- and FoxP3-positive cells detected in cutaneous neurofibromas suggest that these cells may represent regulatory T cells (Tregs) which interact with HLA II –positive cells and aid the tumor cells in hiding from the immune system and are thus mediators of immune tolerance. This thesis also investigated neurofibroma development in the oral cavity and the use of different biomarkers to characterize cellular differentiation in neurofibromas. The results revealed that oral neurofibromas are not rare, but they usually appear as solitary lesions contrary to multiple cutaneous neurofibromas and present high heterogeneity within and between tumors. The use of class III beta-tubulin as a marker for neuronal differentiation led to an unexpected finding showing that multiple cell types express class III beta-tubulin during mitosis. The increased understanding of the multipotency of tumor cells, cellular differentiation and ability to hide from immune system will aid in the development of future treatments. Specifically, targeting Tregs in NF1 patients could provide a novel therapeutic approach to interfere with the development of neurofibromas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Amazonian region, the biggest rain forest of our planet, is known for its extraordinary biodiversity. Most of this diversity is still unexplored and new species of different taxa are regularly found there. In this region, as in most areas of the world, insects are some of the most abundant organisms. Therefore, studying this group is important to promote the conservation of these highly biodiverse ecosystems of the planet. Among insects, parasitoid wasps are especially interesting because they have potential for use as biodiversity indicators and biological control agents in agriculture and forestry. The parasitoid wasp family Ichneumonidae is one of the most species rich groups among the kingdom Animalia. This group is still poorly known in many areas of the world; the Amazonian region is a clear example of this situation. Ichneumonids have been thought to be species poor in Amazonia and other tropical areas. However, recent studies are suggesting that parasitoid wasps may be quite abundant in Amazonia and possibly in most tropical areas of the world. The aim of my doctoral thesis is to study the species richness and taxonomy of two of the best known ichneumonid subfamilies in the Neotropical region, Pimplinae and Rhyssinae. To do this I conducted two extensive sampling programs in the Peruvian Amazonia. I examined also a large number of Neotropical ichneumonids deposited to different natural history museums. According to the results of my thesis, the species richness of these parasitoids in the Amazonian region is considerably higher than previously reported. In my research, I firstly further develop the taxonomy of these parasitoids by describing many new species and reporting several new faunistic records (I, II, III). In this first part I focus on two genera (Xanthopimpla and Epirhyssa) which were thought to be rather species poor. My thesis demonstrates that these groups are actually rather species rich in the Amazonian region. Secondly, I concentrate on the species richness of these parasitoids in a global comparison showing that the Neotropical region and especially the Peruvian Amazonia is one of the most species rich areas of Pimpliformes ichneumonids (V). Furthermore, I demonstrate that with the data available to date no clear latitudinal gradient in species richness is visible. Thirdly, increasing the macroecological knowledge of these parasitoids I show that some previously unreported ichneumonid subfamilies are present in the Amazonian region (IV). These new insights and the results of the global comparison of ichneumonid inventories suggest that the previous belief of low diversity in the tropics is most likely related to a lack of sampling effort in the region. Overall, my research increases the knowledge of Neotropical ichneumonids highlighting the importance of Peruvian Amazonia as one of the diversity hotspots of parasitoid wasps.