8 resultados para sol–gel, absorption
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Abstract
Resumo:
The prevalence of obesity and type 2 diabetes has increased at an alarming rate in developed countries. It seems in the light of current knowledge that metabolic syndrome may not develop at all without NAFLD, and NAFLD is estimated to be as common as metabolic syndrome in western population (23 % occurrence). Fat in the liver is called ectopic fat, which is triacylglycerols within the cells of non-adipose tissue. Serum alanine aminotransferase (ALT) values correlate positively with liver fat proportions, and increased activity of ALT predicts type 2 diabetes independently from obesity. Berries, high in natural bioactive compounds, have indicated the potential to reduce the risk of obesity-related diseases. Ectopic fat induces common endocrine excretion of adipose tissue resulting in the overproduction of inflammatory markers, which further induce insulin resistance by multiple mechanisms. Insulin resistance inducing hyperinsulinemia and lipolysis in adipocytes increases the concentration of free fatty acids and consequently causes further fat accumulation in hepatocytes. Polyphenolic fractions of berries have been shown to reverse inflammatory reaction cascades in in vitro and animal studies, and moreover to decrease ectopic fat accumulation. The aim of this thesis was to explore the role of northern berries in obesity-related diseases. The absorption and metabolism of selected berry polyphenols, flavonol glycosides and anthocyanins, was investigated in humans, and metabolites of the studied compounds were identified in plasma and urine samples (I, II). Further, the effects of berries on the risk factors of metabolic syndrome were studied in clinical intervention trials (III, IV), and the different fractions of sea buckthorn berry were tested for their ability to reduce postprandial glycemia and insulinemia after high-glucose meal in a postprandial study with humans (V). The marked impact of mixed berries on plasma ALT values (III), as well as indications of the positive effects of sea buckthorn, its fractions and bilberry on omental adiposity and adhesion molecules (IV) were observed. In study V, sea buckthorn and its polyphenol fractions had a promising effect on potprandial metabolism after high-glucose meal. In the literature review, the possible mechanisms behind the observed effects have been discussed with a special emphasis on ectopic fat accumulation. The literature review indicated that especially tannins and flavonoids have shown potential in suppressing diverse reaction cascades related to systemic inflammation, ectopic fat accumulation and insulin resistance development.
Resumo:
Inorganic-organic sol-gel hybrid coatings can be used for improving and modifying properties of wood-based materials. By selecting a proper precursor, wood can be made water repellent, decay-, moisture- or UV-resistant. However, to control the barrier properties of sol-gel coatings on wood substrates against moisture uptake and weathering, an understanding of the surface morphology and chemistry of the deposited sol-gel coatings on wood substrates is needed. Mechanical pulp is used in production of wood-containing printing papers. The physical and chemical fiber surface characteristics, as created in the chosen mechanical pulp manufacturing process, play a key role in controlling the properties of the end-use product. A detailed understanding of how process parameters influence fiber surfaces can help improving cost-effectiveness of pulp and paper production. The current work focuses on physico-chemical characterization of modified wood-based materials with surface sensitive analytical tools. The overall objectives were, through advanced microscopy and chemical analysis techniques, (i) to collect versatile information about the surface structures of Norway spruce thermomechanical pulp fiber walls and understand how they are influenced by the selected chemical treatments, and (ii) to clarify the effect of various sol-gel coatings on surface structural and chemical properties of wood-based substrates. A special emphasis was on understanding the effect of sol-gel coatings on the water repellency of modified wood and paper surfaces. In the first part of the work, effects of chemical treatment on micro- and nano-scale surface structure of 1st stage TMP latewood fibers from Norway spruce were investigated. The chemicals applied were buffered sodium oxalate and hydrochloric acid. The outer and the inner fiber wall layers of the untreated and chemically treated fibers were separately analyzed by light microscopy, atomic force microscopy and field-emission scanning electron microscopy. The selected characterization methods enabled the demonstration of the effect of different treatments on the fiber surface structure, both visually and quantitatively. The outer fiber wall areas appeared as intact bands surrounding the fiber and they were clearly rougher than areas of exposed inner fiber wall. The roughness of the outer fiber wall areas increased most in the sodium oxalate treatment. The results indicated formation of more surface pores on the exposed inner fiber wall areas than on the corresponding outer fiber wall areas as a result of the chemical treatments. The hydrochloric acid treatment seemed to increase the surface porosity of the inner wall areas. In the second part of the work, three silane-based sol-gel hybrid coatings were selected in order to improve moisture resistance of wood and paper substrates. The coatings differed from each other in terms of having different alkyl (CH3–, CH3-(CH2)7–) and fluorocarbon (CF3–) chains attached to the trialkoxysilane sol-gel precursor. The sol-gel coatings were deposited by a wet coating method, i.e. spraying or spreading by brush. The effect of solgel coatings on surface structural and chemical properties of wood-based substrates was studied by using advanced surface analyzing tools: atomic force microscopy, X-ray photoelectron spectroscopy and time-of-flight secondary ion spectroscopy. The results show that the applied sol-gel coatings, deposited as thin films or particulate coatings, have different effects on surface characteristics of wood and wood-based materials. The coating which has a long hydrocarbon chain (CH3-(CH2)7–) attached to the silane backbone (octyltriethoxysilane) produced the highest hydrophobicity for wood and wood-based materials.
Resumo:
In this research work, the aim was to investigate the volumetric mass transfer coefficient [kLa] of oxygen in stirred tank in the presence of solid particle experimentally. The kLa correlations as a function of propeller rotation speed and flow rate of gas feed were studied. The O2 and CO2 absorption in water and in solid-liquid suspensions and heterogeneous precipitation of MgCO3 were thoroughly examined. The absorption experiments of oxygen were conducted in various systems like pure water and in aqueous suspensions of quartz and calcium carbonate particles. Secondly, the precipitation kinetics of magnesium carbonate was also investigated. The experiments were performed to study the reactive crystallization with magnesium hydroxide slurry and carbon dioxide gas by varying the feed rates of carbon dioxide and rotation speeds of mixer. The results of absorption and precipitation are evaluated by titration, total carbon (TC analysis), and ionic chromatrography (IC). For calcium carbonate, the particle concentration was varied from 17.4 g to 2382 g with two size fractions: 5 µm and 45-63 µm sieves. The kLa and P/V values of 17.4 g CaCO3 with particle size of 5µm and 45-63 µm were 0.016 s-1 and 2400 W/m3. At 69.9 g concentration of CaCO3, the achieved kLa is 0.014 s-1 with particle size of 5 µm and 0.017 s-1 with particle size of 45 to 63 µm. Further increase in concentration of calcium carbonate, i.e. 870g and 2382g , does not affect volumetric mass transfer coeffienct of oxygen. It could be concluded from absorption results that maximum value of kLa is 0.016 s-1. Also particle size and concentration does affect the transfer rate to some extend. For precipitation experiments, the constant concentration of Mg(OH)2 was 100 g and the rotation speed varied from 560 to 750 rpm, whereas the used feed rates of CO2 were 1 and 9 L/min. At 560 rpm and feed rate of CO2 is 1 L/min, the maximum value of Mg ion and TC were 0.25 mol/litre and 0.12 mol/litre with the residence time of 40 min. When flow rate of CO2 increased to 9 L/min with same 560 rpm, the achieved value of Mg and TC were 0.3 mol/litre and 0.12 mol/L with shorter residence time of 30 min. It is concluded that feed rate of CO2 is dominant in precipitation experiments and it has a key role in dissociation and reaction of magnesium hydroxide in precipitation of magnesium carbonate.
Resumo:
I organiska halvledare påverkas mängden laddningsbärare kraftigt av indirekt rekombination, det vill säga processen då fria laddningsbärare försvinner genom att kombineras med orörliga laddningsbärare av motsatt laddning. De orörliga laddningsbärarna uppstår när laddningsbärare fastnar i fällor, som är energitillstånd med låg energi och densitet. Utöver indirekt rekombination sker även direkt rekombination mellan fria laddningsbärare. Då man tillverkar solceller av organiska halvledare påverkas effektiviteten av energidistributionen och rekombinationsprocesserna i materialen. Utveckling av olika metoder för undersökning av dessa egenskaper är således till nytta i jakten på bättre solcellsmaterial. Målet med detta arbete var att vidareutveckla dataanalysen för cwPA-mätningar(från engelska continuous-wave Photoinduced Absorption) för att ur resultaten få information om indirekt rekombination och fälldistributioner. I cwPA-mätningar studerar man fotoinducerad absorption, det vill säga förändringen i absorption hos ett prov då densiteten av fotogenererade laddningsbärare varierar. Laddningsbärarna genereras av ett pumpljus vars intensitet ges av en fyrkantsvåg som växlar mellan 0 och I med vinkelfrekvensen omega. Resultaten fås i form av i-fas-signal (PAI), som har samma frekvens och fas som pumpljuset, och kvadratur (PAQ), som har samma frekvens som pumpljuset men är fasförskjuten 90 grader. Fördelen med denna mätning är förutom känsligheten att den är kontaktlös, vilket gör att den visar egenskaperna hos det undersökta materialet utan att påverkas av elektriska kontakter. För att undersöka inverkan av indirekt rekombination på cwPA-mätningar simulerades mätresultat genom att använda numeriska beräkningar. Grunden för simuleringarna var att lösa differentialekvationer för densiteter av laddningsbärare i olika tillstånd. Beräkningarna använde en modell med transporttillstånd och fällor placerade så att energidistributionen var symmetrisk för elektroner och hål. Modellen antog att laddningsbärare inte kunde röra sig direkt mellan fällor utan endast via transporttillstånd. Från simuleringarna erhölls användbara samband mellan fotoinducerad absorption och olika fälldistributioner. Särskilt påverkade distributionerna i-fas-signalen för hög intensitet på pumpljuset och kvadraturen för låg frekvens på fyrkantsvågen. För en exponentiell fälldistribution hittades samband mellan mätresultat och distributionens karakteristiska energi (Ech) i förhållande till temperaturen (T). Dessa är för hög intensitet PAI~I^(1+Ech/kT) och för låg frekvens PAQ~omega^(kT/Ech). Resultaten visade att man kan skilja på en exponentiell fälldistribution, en gaussisk fälldistribution och ett system som domineras av direkt rekombination genom att göra cwPA-mätningar vid olika temperaturer.