18 resultados para semilinear parabolic equations
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Abstract
Resumo:
Granular flow phenomena are frequently encountered in the design of process and industrial plants in the traditional fields of the chemical, nuclear and oil industries as well as in other activities such as food and materials handling. Multi-phase flow is one important branch of the granular flow. Granular materials have unusual kinds of behavior compared to normal materials, either solids or fluids. Although some of the characteristics are still not well-known yet, one thing is confirmed: the particle-particle interaction plays a key role in the dynamics of granular materials, especially for dense granular materials. At the beginning of this thesis, detailed illustration of developing two models for describing the interaction based on the results of finite-element simulation, dimension analysis and numerical simulation is presented. The first model is used to describing the normal collision of viscoelastic particles. Based on some existent models, more parameters are added to this model, which make the model predict the experimental results more accurately. The second model is used for oblique collision, which include the effects from tangential velocity, angular velocity and surface friction based on Coulomb's law. The theoretical predictions of this model are in agreement with those by finite-element simulation. I n the latter chapters of this thesis, the models are used to predict industrial granular flow and the agreement between the simulations and experiments also shows the validation of the new model. The first case presents the simulation of granular flow passing over a circular obstacle. The simulations successfully predict the existence of a parabolic steady layer and show how the characteristics of the particles, such as coefficients of restitution and surface friction affect the separation results. The second case is a spinning container filled with granular material. Employing the previous models, the simulation could also reproduce experimentally observed phenomena, such as a depression in the center of a high frequency rotation. The third application is about gas-solid mixed flow in a vertically vibrated device. Gas phase motion is added to coherence with the particle motion. The governing equations of the gas phase are solved by using the Large eddy simulation (LES) and particle motion is predicted by using the Lagrangian method. The simulation predicted some pattern formation reported by experiment.
Resumo:
Normally either the Güntelberg or Davies equation is used to predict activity coefficients of electrolytes in dilute solutions when no better equation is available. The validity of these equations and, additionally, of the parameter-free equations used in the Bates-Guggenheim convention and in the Pitzerformalism for activity coefficients were tested with experimentally determined activity coefficients of HCl, HBr, HI, LiCl, NaCl, KCl, RbCl, CsCl, NH4Cl, LiBr,NaBr and KBr in aqueous solutions at 298.15 K. The experimental activity coefficients of these electrolytes can be usually reproduced within experimental errorby means of a two-parameter equation of the Hückel type. The best Hückel equations were also determined for all electrolytes considered. The data used in the calculations of this study cover almost all reliable galvanic cell results available in the literature for the electrolytes considered. The results of the calculations reveal that the parameter-free activity coefficient equations can only beused for very dilute electrolyte solutions in thermodynamic studies.
Resumo:
Normally either the Güntelberg or Davies equation is used to predict activity coefficients of electrolytes in dilute solutions when no betterequation is available. The validity of these equations and, additionally, of the parameter-free equation used in the Bates-Guggenheim convention for activity coefficients were tested with experimentally determined activity coefficients of LaCl3, CaCl2, SrCl2 and BaCl2 in aqueous solutions at 298.15 K. The experimentalactivity coefficients of these electrolytes can be usually reproduced within experimental error by means of a two-parameter equation of the Hückel type. The best Hückel equations were also determined for all electrolytes considered. The data used in the calculations of this study cover almost all reliable galvanic cell results available in the literature for the electrolytes considered. The results of the calculations reveal that the parameter-free activity coefficient equations can only be used for very dilute electrolyte solutions in thermodynamic studies
Resumo:
A rigorous unit operation model is developed for vapor membrane separation. The new model is able to describe temperature, pressure, and concentration dependent permeation as wellreal fluid effects in vapor and gas separation with hydrocarbon selective rubbery polymeric membranes. The permeation through the membrane is described by a separate treatment of sorption and diffusion within the membrane. The chemical engineering thermodynamics is used to describe the equilibrium sorption of vapors and gases in rubbery membranes with equation of state models for polymeric systems. Also a new modification of the UNIFAC model is proposed for this purpose. Various thermodynamic models are extensively compared in order to verify the models' ability to predict and correlate experimental vapor-liquid equilibrium data. The penetrant transport through the selective layer of the membrane is described with the generalized Maxwell-Stefan equations, which are able to account for thebulk flux contribution as well as the diffusive coupling effect. A method is described to compute and correlate binary penetrant¿membrane diffusion coefficients from the experimental permeability coefficients at different temperatures and pressures. A fluid flow model for spiral-wound modules is derived from the conservation equation of mass, momentum, and energy. The conservation equations are presented in a discretized form by using the control volume approach. A combination of the permeation model and the fluid flow model yields the desired rigorous model for vapor membrane separation. The model is implemented into an inhouse process simulator and so vapor membrane separation may be evaluated as an integralpart of a process flowsheet.
Resumo:
Research on color difference evaluation has been active in recent thirty years. Several color difference formulas were developed for industrial applications. The aims of this thesis are to develop the color density which is denoted by comb g and to propose the color density based chromaticity difference formulas. Color density is derived from the discrimination ellipse parameters and color positions in the xy , xyY and CIELAB color spaces, and the color based chromaticity difference formulas are compared with the line element formulas and CIE 2000 color difference formulas. As a result of the thesis, color density represents the perceived color difference accurately, and it could be used to characterize a color by the attribute of perceived color difference from this color.
Resumo:
Kvanttimekaniikan teoriassa suljettuja, ympäristöstään eristettyjä systeemejä koskevat tulokset ovat hyvin tunnettuja. Eräs tärkeä erityispiirre tällaisille systeemeille on, että niiden aikakehitys on unitaarista. Oletus siitä, että systeemi on suljettu, on osaltaan tietysti vain yksinkertaistus. Käytännössä kaikki kvanttimekaaniset systeemit vuorovaikuttavat ympäristönsä kanssa ja tästä johtuen niiden dynamiikka monimutkaistuu oleellisesti. Kuitenkin tietyissä tapauksissa systeemin aikakehitys voidaan ratkaista, ainakin approksimatiivisesti. Tärkeimpinä esimerkkeinä on ympäristön joko nopea tai erittäin hidas muutos kvanttisysteemin ominaiseen aikaskaalaan verrattuna. Näistä erityisesti jälkimmäinen on käyttökelpoinen oletus monissa fysikaalisissa tilanteissa. Tällöin voidaan suorittaa niin sanottu adiabaattinen approksimaatio. Sen mukaan systeemi, joka on aikakehityksen generoivan Hamiltonin operaattorin ominaistilassa, pysyy vastaavassa ominaistilassa ympäristön muuttuessa äärettömän hitaasti, mikäli systeemin eri energiatasot eivät leikkaa toisiaan. Todellisissa tilanteissa muutos ei tietenkään voi olla äärettömän hidasta ja myös energiatasojen leikkaukset ovat mahdollisia, jolloin tapahtuu transitio eri ominaistilojen välillä. Energiatasojen leikkauksilla on oleellisia vaikutuksia erittäin monissa fysikaalisissa prosesseissa ja niitä kuvaamaan on luotu monia malleja kvanttimekaniikan alkuajoista lähtien aina tähän päivään saakka. Nykyinen teknologinen kehitys on avannut uudenlaisen mahdollisuuden ilmiön kokeelliseen varmentamiseen ja hyödyntämiseen. Tämän vuoksi kyseisten mallien dynamiikan ja erityisesti energiatasojen useiden peräkkäisten leikkausten aiheuttamien koherenssi-ilmiöiden selvittäminen on tärkeää. Tässä työssä käsitellään kvanttimekaanisia kaksitasosysteemejä, joissa esiintyy energiatasojen leikkauksia sekä niiden pitkän aikavälin dynamiikkaa. Tutkielmassa perehdytään tarkemmin kahteen tiettyyn malliin. Näistä ensimmäinen, Landau-Zener -malli, on tunnetuin ja sovelluksissa käytetyin malli. Kuitenkin erityisen mielenkiinnon kohteena on niin kutsuttu parabolinen malli, jolle johdetaan eri approksimaatioita käyttäen asymptoottiset transitiotodennäköisyydet eri tilojen välille. Näitä verrataan numeerisiin tuloksiin.
Resumo:
This thesis studies properties of transforms based on parabolic scaling, like Curvelet-, Contourlet-, Shearlet- and Hart-Smith-transform. Essentially, two di erent questions are considered: How these transforms can characterize H older regularity and how non-linear approximation of a piecewise smooth function converges. In study of Hölder regularities, several theorems that relate regularity of a function f : R2 → R to decay properties of its transform are presented. Of particular interest is the case where a function has lower regularity along some line segment than elsewhere. Theorems that give estimates for direction and location of this line, and regularity of the function are presented. Numerical demonstrations suggest also that similar theorems would hold for more general shape of segment of low regularity. Theorems related to uniform and pointwise Hölder regularity are presented as well. Although none of the theorems presented give full characterization of regularity, the su cient and necessary conditions are very similar. Another theme of the thesis is the study of convergence of non-linear M ─term approximation of functions that have discontinuous on some curves and otherwise are smooth. With particular smoothness assumptions, it is well known that squared L2 approximation error is O(M-2(logM)3) for curvelet, shearlet or contourlet bases. Here it is shown that assuming higher smoothness properties, the log-factor can be removed, even if the function still is discontinuous.
Resumo:
Bakgrunden och inspirationen till föreliggande studie är tidigare forskning i tillämpningar på randidentifiering i metallindustrin. Effektiv randidentifiering möjliggör mindre säkerhetsmarginaler och längre serviceintervall för apparaturen i industriella högtemperaturprocesser, utan ökad risk för materielhaverier. I idealfallet vore en metod för randidentifiering baserad på uppföljning av någon indirekt variabel som kan mätas rutinmässigt eller till en ringa kostnad. En dylik variabel för smältugnar är temperaturen i olika positioner i väggen. Denna kan utnyttjas som insignal till en randidentifieringsmetod för att övervaka ugnens väggtjocklek. Vi ger en bakgrund och motivering till valet av den geometriskt endimensionella dynamiska modellen för randidentifiering, som diskuteras i arbetets senare del, framom en flerdimensionell geometrisk beskrivning. I de aktuella industriella tillämpningarna är dynamiken samt fördelarna med en enkel modellstruktur viktigare än exakt geometrisk beskrivning. Lösningsmetoder för den s.k. sidledes värmeledningsekvationen har många saker gemensamt med randidentifiering. Därför studerar vi egenskaper hos lösningarna till denna ekvation, inverkan av mätfel och något som brukar kallas förorening av mätbrus, regularisering och allmännare följder av icke-välställdheten hos sidledes värmeledningsekvationen. Vi studerar en uppsättning av tre olika metoder för randidentifiering, av vilka de två första är utvecklade från en strikt matematisk och den tredje från en mera tillämpad utgångspunkt. Metoderna har olika egenskaper med specifika fördelar och nackdelar. De rent matematiskt baserade metoderna karakteriseras av god noggrannhet och låg numerisk kostnad, dock till priset av låg flexibilitet i formuleringen av den modellbeskrivande partiella differentialekvationen. Den tredje, mera tillämpade, metoden kännetecknas av en sämre noggrannhet förorsakad av en högre grad av icke-välställdhet hos den mera flexibla modellen. För denna gjordes även en ansats till feluppskattning, som senare kunde observeras överensstämma med praktiska beräkningar med metoden. Studien kan anses vara en god startpunkt och matematisk bas för utveckling av industriella tillämpningar av randidentifiering, speciellt mot hantering av olinjära och diskontinuerliga materialegenskaper och plötsliga förändringar orsakade av “nedfallande” väggmaterial. Med de behandlade metoderna förefaller det möjligt att uppnå en robust, snabb och tillräckligt noggrann metod av begränsad komplexitet för randidentifiering.