12 resultados para semantic retrieval
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This piece of work which is Identification of Research Portfolio for Development of Filtration Equipment aims at presenting a novel approach to identify promising research topics in the field of design and development of filtration equipment and processes. The projected approach consists of identifying technological problems often encountered in filtration processes. The sources of information for the problem retrieval were patent documents and scientific papers that discussed filtration equipments and processes. The problem identification method adopted in this work focussed on the semantic nature of a sentence in order to generate series of subject-action-object structures. This was achieved with software called Knowledgist. List of problems often encountered in filtration processes that have been mentioned in patent documents and scientific papers were generated. These problems were carefully studied and categorized. Suggestions were made on the various classes of these problems that need further investigation in order to propose a research portfolio. The uses and importance of other methods of information retrieval were also highlighted in this work.
Resumo:
Coherent anti-Stokes Raman scattering is the powerful method of laser spectroscopy in which significant successes are achieved. However, the non-linear nature of CARS complicates the analysis of the received spectra. The objective of this Thesis is to develop a new phase retrieval algorithm for CARS. It utilizes the maximum entropy method and the new wavelet approach for spectroscopic background correction of a phase function. The method was developed to be easily automated and used on a large number of spectra of different substances.. The algorithm was successfully tested on experimental data.
Resumo:
The main focus of the present thesis was at verbal episodic memory processes that are particularly vulnerable to preclinical and clinical Alzheimer’s disease (AD). Here these processes were studied by a word learning paradigm, cutting across the domains of memory and language learning studies. Moreover, the differentiation between normal aging, mild cognitive impairment (MCI) and AD was studied by the cognitive screening test CERAD. In study I, the aim was to examine how patients with amnestic MCI differ from healthy controls in the different CERAD subtests. Also, the sensitivity and specificity of the CERAD screening test to MCI and AD was examined, as previous studies on the sensitivity and specificity of the CERAD have not included MCI patients. The results indicated that MCI is characterized by an encoding deficit, as shown by the overall worse performance on the CERAD Wordlist learning test compared with controls. As a screening test, CERAD was not very sensitive to MCI. In study II, verbal learning and forgetting in amnestic MCI, AD and healthy elderly controls was investigated with an experimental word learning paradigm, where names of 40 unfamiliar objects (mainly archaic tools) were trained with or without semantic support. The object names were trained during a 4-day long period and a follow-up was conducted one week, 4 weeks and 8 weeks after the training period. Manipulation of semantic support was included in the paradigm because it was hypothesized that semantic support might have some beneficial effects in the present learning task especially for the MCI group, as semantic memory is quite well preserved in MCI in contrast to episodic memory. We found that word learning was significantly impaired in MCI and AD patients, whereas forgetting patterns were similar across groups. Semantic support showed a beneficial effect on object name retrieval in the MCI group 8 weeks after training, indicating that the MCI patients’ preserved semantic memory abilities compensated for their impaired episodic memory. The MCI group performed equally well as the controls in the tasks tapping incidental learning and recognition memory, whereas the AD group showed impairment. Both the MCI and the AD group benefited less from phonological cueing than the controls. Our findings indicate that acquisition is compromised in both MCI and AD, whereas long13 term retention is not affected to the same extent. Incidental learning and recognition memory seem to be well preserved in MCI. In studies III and IV, the neural correlates of naming newly learned objects were examined in healthy elderly subjects and in amnestic MCI patients by means of positron emission tomography (PET) right after the training period. The naming of newly learned objects by healthy elderly subjects recruited a left-lateralized network, including frontotemporal regions and the cerebellum, which was more extensive than the one related to the naming of familiar objects (study III). Semantic support showed no effects on the PET results for the healthy subjects. The observed activation increases may reflect lexicalsemantic and lexical-phonological retrieval, as well as more general associative memory mechanisms. In study IV, compared to the controls, the MCI patients showed increased anterior cingulate activation when naming newly learned objects that had been learned without semantic support. This suggests a recruitment of additional executive and attentional resources in the MCI group.
Resumo:
"Helmiä sioille", pärlor för svin, säger man på finska om någonting bra och fint som tas emot av en mottagare som inte vill eller har ingen förmåga att förstå, uppskatta eller utnyttja hela den potential som finns hos det mottagna föremålet, är ointresserad av den eller gillar den inte. För sådana relativt stabila flerordiga uttryck, som är lagrade i språkbrukarnas minnen och som demonstrerar olika slags oregelbundna drag i sin struktur använder man inom lingvistiken bl.a. termerna "idiom" eller "fraseologiska enheter". Som en oregelbundenhet kan man t.ex. beskriva det faktum att betydelsen hos uttrycket inte är densamma som man skulle komma till ifall man betraktade det som en vanlig regelbunden fras. En annan oregelbundenhet, som idiomforskare har observerat, ligger i den begränsade förmågan att varieras i form och betydelse, som många idiom har jämfört med regelbundna fraser. Därför talas det ofta om "grundform" och "grundbetydelse" hos idiom och variationen avses som avvikelse från dessa. Men när man tittar på ett stort antal förekomstexempel av idiom i språkbruk, märker man att många av dem tillåter variation, t.o.m. i sådan utsträckning att gränserna mellan en variant och en "grundform" suddas ut, och istället för ett idiom råkar vi plötsligt på en "familj" av flera besläktade uttryck. Allt detta väcker frågan om hur dessa uttryck egentligen ska vara representerade i språket. I avhandlingen utförs en kritisk granskning av olika tidigare tillvägagångssätt att beskriva fraseologiska enheter i syfte att klargöra vilka svårigheter deras struktur och variation erbjuder för den lingvistiska teorin. Samtidigt presenteras ett alternativt sätt att beskriva dessa uttryck. En systematisk och formell modell som utvecklas i denna avhandling integrerar en beskrivning av idiom på många olika språkliga nivåer och skildrar deras variation i form av ett nätverk och som ett resultat av samspel mellan idiomets struktur och kontexter där det förekommer, samt av interaktion med andra fasta uttryck. Modellen bygger på en fördjupande, språkbrukbaserad analys av det finska idiomet "X HEITTÄÄ HELMIÄ SIOILLE" (X kastar pärlor för svin).
Resumo:
Biomedical natural language processing (BioNLP) is a subfield of natural language processing, an area of computational linguistics concerned with developing programs that work with natural language: written texts and speech. Biomedical relation extraction concerns the detection of semantic relations such as protein-protein interactions (PPI) from scientific texts. The aim is to enhance information retrieval by detecting relations between concepts, not just individual concepts as with a keyword search. In recent years, events have been proposed as a more detailed alternative for simple pairwise PPI relations. Events provide a systematic, structural representation for annotating the content of natural language texts. Events are characterized by annotated trigger words, directed and typed arguments and the ability to nest other events. For example, the sentence “Protein A causes protein B to bind protein C” can be annotated with the nested event structure CAUSE(A, BIND(B, C)). Converted to such formal representations, the information of natural language texts can be used by computational applications. Biomedical event annotations were introduced by the BioInfer and GENIA corpora, and event extraction was popularized by the BioNLP'09 Shared Task on Event Extraction. In this thesis we present a method for automated event extraction, implemented as the Turku Event Extraction System (TEES). A unified graph format is defined for representing event annotations and the problem of extracting complex event structures is decomposed into a number of independent classification tasks. These classification tasks are solved using SVM and RLS classifiers, utilizing rich feature representations built from full dependency parsing. Building on earlier work on pairwise relation extraction and using a generalized graph representation, the resulting TEES system is capable of detecting binary relations as well as complex event structures. We show that this event extraction system has good performance, reaching the first place in the BioNLP'09 Shared Task on Event Extraction. Subsequently, TEES has achieved several first ranks in the BioNLP'11 and BioNLP'13 Shared Tasks, as well as shown competitive performance in the binary relation Drug-Drug Interaction Extraction 2011 and 2013 shared tasks. The Turku Event Extraction System is published as a freely available open-source project, documenting the research in detail as well as making the method available for practical applications. In particular, in this thesis we describe the application of the event extraction method to PubMed-scale text mining, showing how the developed approach not only shows good performance, but is generalizable and applicable to large-scale real-world text mining projects. Finally, we discuss related literature, summarize the contributions of the work and present some thoughts on future directions for biomedical event extraction. This thesis includes and builds on six original research publications. The first of these introduces the analysis of dependency parses that leads to development of TEES. The entries in the three BioNLP Shared Tasks, as well as in the DDIExtraction 2011 task are covered in four publications, and the sixth one demonstrates the application of the system to PubMed-scale text mining.
Resumo:
Context: Web services have been gaining popularity due to the success of service oriented architecture and cloud computing. Web services offer tremendous opportunity for service developers to publish their services and applications over the boundaries of the organization or company. However, to fully exploit these opportunities it is necessary to find efficient discovery mechanism thus, Web services discovering mechanism has attracted a considerable attention in Semantic Web research, however, there have been no literature surveys that systematically map the present research result thus overall impact of these research efforts and level of maturity of their results are still unclear. This thesis aims at providing an overview of the current state of research into Web services discovering mechanism using systematic mapping. The work is based on the papers published 2004 to 2013, and attempts to elaborate various aspects of the analyzed literature including classifying them in terms of the architecture, frameworks and methods used for web services discovery mechanism. Objective: The objective if this work is to summarize the current knowledge that is available as regards to Web service discovery mechanisms as well as to systematically identify and analyze the current published research works in order to identify different approaches presented. Method: A systematic mapping study has been employed to assess the various Web Services discovery approaches presented in the literature. Systematic mapping studies are useful for categorizing and summarizing the level of maturity research area. Results: The result indicates that there are numerous approaches that are consistently being researched and published in this field. In terms of where these researches are published, conferences are major contributing publishing arena as 48% of the selected papers were conference published papers illustrating the level of maturity of the research topic. Additionally selected 52 papers are categorized into two broad segments namely functional and non-functional based approaches taking into consideration architectural aspects and information retrieval approaches, semantic matching, syntactic matching, behavior based matching as well as QOS and other constraints.
Resumo:
Human activity recognition in everyday environments is a critical, but challenging task in Ambient Intelligence applications to achieve proper Ambient Assisted Living, and key challenges still remain to be dealt with to realize robust methods. One of the major limitations of the Ambient Intelligence systems today is the lack of semantic models of those activities on the environment, so that the system can recognize the speci c activity being performed by the user(s) and act accordingly. In this context, this thesis addresses the general problem of knowledge representation in Smart Spaces. The main objective is to develop knowledge-based models, equipped with semantics to learn, infer and monitor human behaviours in Smart Spaces. Moreover, it is easy to recognize that some aspects of this problem have a high degree of uncertainty, and therefore, the developed models must be equipped with mechanisms to manage this type of information. A fuzzy ontology and a semantic hybrid system are presented to allow modelling and recognition of a set of complex real-life scenarios where vagueness and uncertainty are inherent to the human nature of the users that perform it. The handling of uncertain, incomplete and vague data (i.e., missing sensor readings and activity execution variations, since human behaviour is non-deterministic) is approached for the rst time through a fuzzy ontology validated on real-time settings within a hybrid data-driven and knowledgebased architecture. The semantics of activities, sub-activities and real-time object interaction are taken into consideration. The proposed framework consists of two main modules: the low-level sub-activity recognizer and the high-level activity recognizer. The rst module detects sub-activities (i.e., actions or basic activities) that take input data directly from a depth sensor (Kinect). The main contribution of this thesis tackles the second component of the hybrid system, which lays on top of the previous one, in a superior level of abstraction, and acquires the input data from the rst module's output, and executes ontological inference to provide users, activities and their in uence in the environment, with semantics. This component is thus knowledge-based, and a fuzzy ontology was designed to model the high-level activities. Since activity recognition requires context-awareness and the ability to discriminate among activities in di erent environments, the semantic framework allows for modelling common-sense knowledge in the form of a rule-based system that supports expressions close to natural language in the form of fuzzy linguistic labels. The framework advantages have been evaluated with a challenging and new public dataset, CAD-120, achieving an accuracy of 90.1% and 91.1% respectively for low and high-level activities. This entails an improvement over both, entirely data-driven approaches, and merely ontology-based approaches. As an added value, for the system to be su ciently simple and exible to be managed by non-expert users, and thus, facilitate the transfer of research to industry, a development framework composed by a programming toolbox, a hybrid crisp and fuzzy architecture, and graphical models to represent and con gure human behaviour in Smart Spaces, were developed in order to provide the framework with more usability in the nal application. As a result, human behaviour recognition can help assisting people with special needs such as in healthcare, independent elderly living, in remote rehabilitation monitoring, industrial process guideline control, and many other cases. This thesis shows use cases in these areas.