48 resultados para seeding fertilizer

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Lannoituksen pitkäaikaiset kenttäkokeet: kolmen matemaattisen mallin vertailu

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Lajikkeen, typpilannoitustason ja maalajin vaikutus ohran ruokinnalliseen arvoon lihasioilla

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Maan muotoilun, kylvötavan ja siementiheyden vaikutus porkkanan satoon

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Typen ja fosforin kulkeutuminen pinta- ja salaojavalunnassa lietelannalla ja NKP-lannoitteella lannoitetulta nurmelta

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Kylvötiheyden ja kasvunsääteiden vaikutus kevätrukiin satoon

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fertilizer plant’s process waters contain high concentrations of nitrogen compounds, such as ammonium and nitrate. Phosphorus and fluorine, which originate from phosphoric acid and rock phosphate (apatite) used in fertilizer production, are also present. Phosphorus and nitrogen are the primary nutrients causing eutrophication of surface waters. At fertilizer plant process waters are held in closed internal circulation. In a scrubber system process waters are used for washing exhaust gases from fertilizer reactors and dry gases from granulation drums as well as for cooling down the fertilizer slurry in neutralization reactor. Solids in process waters are separated in an inclined plate settler by gravitational sedimentation. However, the operation of inclined plate settler has been inadequate. The aim of this thesis was to intensify the operation of inclined plate settler and thus the solids separation e.g. through coagulation and/or flocculation process. Chemical precipitation was studied to reduce the amount of dissolved species in process waters. Specific interest was in precipitation of nitrogen, phosphorus, and fluorine containing specimens. Amounts of phosphorus and fluorine were reduced significantly by chemical precipitation. When compared to earlier studies, annual chemical costs were almost eight times lower. Instead, nitrogen compounds are readily dissolved in water, thus being difficult to remove by precipitation. Possible alternative techniques for nitrogen removal are adsorption, ion exchange, and reverse osmosis. Settling velocities of pH adjusted and flocculated process waters were sufficient for the operation of inclined plate settler. Design principles of inclined plate settler are also presented. In continuation studies, flow conditions in inclined plate settler should be modelled with computational fluid dynamics and suitability of adsorbents, ion exchange resins, and membranes should be studied in laboratory scale tests.