12 resultados para science learning
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Traditionally metacognition has been theorised, methodologically studied and empirically tested from the standpoint mainly of individuals and their learning contexts. In this dissertation the emergence of metacognition is analysed more broadly. The aim of the dissertation was to explore socially shared metacognitive regulation (SSMR) as part of collaborative learning processes taking place in student dyads and small learning groups. The specific aims were to extend the concept of individual metacognition to SSMR, to develop methods to capture and analyse SSMR and to validate the usefulness of the concept of SSMR in two different learning contexts; in face-to-face student dyads solving mathematical word problems and also in small groups taking part in inquiry-based science learning in an asynchronous computer-supported collaborative learning (CSCL) environment. This dissertation is comprised of four studies. In Study I, the main aim was to explore if and how metacognition emerges during problem solving in student dyads and then to develop a method for analysing the social level of awareness, monitoring, and regulatory processes emerging during the problem solving. Two dyads comprised of 10-year-old students who were high-achieving especially in mathematical word problem solving and reading comprehension were involved in the study. An in-depth case analysis was conducted. Data consisted of over 16 (30–45 minutes) videotaped and transcribed face-to-face sessions. The dyads solved altogether 151 mathematical word problems of different difficulty levels in a game-format learning environment. The interaction flowchart was used in the analysis to uncover socially shared metacognition. Interviews (also stimulated recall interviews) were conducted in order to obtain further information about socially shared metacognition. The findings showed the emergence of metacognition in a collaborative learning context in a way that cannot solely be explained by individual conception. The concept of socially-shared metacognition (SSMR) was proposed. The results highlighted the emergence of socially shared metacognition specifically in problems where dyads encountered challenges. Small verbal and nonverbal signals between students also triggered the emergence of socially shared metacognition. Additionally, one dyad implemented a system whereby they shared metacognitive regulation based on their strengths in learning. Overall, the findings suggested that in order to discover patterns of socially shared metacognition, it is important to investigate metacognition over time. However, it was concluded that more research on socially shared metacognition, from larger data sets, is needed. These findings formed the basis of the second study. In Study II, the specific aim was to investigate whether socially shared metacognition can be reliably identified from a large dataset of collaborative face-to-face mathematical word problem solving sessions by student dyads. We specifically examined different difficulty levels of tasks as well as the function and focus of socially shared metacognition. Furthermore, the presence of observable metacognitive experiences at the beginning of socially shared metacognition was explored. Four dyads participated in the study. Each dyad was comprised of high-achieving 10-year-old students, ranked in the top 11% of their fourth grade peers (n=393). Dyads were from the same data set as in Study I. The dyads worked face-to-face in a computer-supported, game-format learning environment. Problem-solving processes for 251 tasks at three difficulty levels taking place during 56 (30–45 minutes) lessons were video-taped and analysed. Baseline data for this study were 14 675 turns of transcribed verbal and nonverbal behaviours observed in four study dyads. The micro-level analysis illustrated how participants moved between different channels of communication (individual and interpersonal). The unit of analysis was a set of turns, referred to as an ‘episode’. The results indicated that socially shared metacognition and its function and focus, as well as the appearance of metacognitive experiences can be defined in a reliable way from a larger data set by independent coders. A comparison of the different difficulty levels of the problems suggested that in order to trigger socially shared metacognition in small groups, the problems should be more difficult, as opposed to moderately difficult or easy. Although socially shared metacognition was found in collaborative face-to-face problem solving among high-achieving student dyads, more research is needed in different contexts. This consideration created the basis of the research on socially shared metacognition in Studies III and IV. In Study III, the aim was to expand the research on SSMR from face-to-face mathematical problem solving in student dyads to inquiry-based science learning among small groups in an asynchronous computer-supported collaborative learning (CSCL) environment. The specific aims were to investigate SSMR’s evolvement and functions in a CSCL environment and to explore how SSMR emerges at different phases of the inquiry process. Finally, individual student participation in SSMR during the process was studied. An in-depth explanatory case study of one small group of four girls aged 12 years was carried out. The girls attended a class that has an entrance examination and conducts a language-enriched curriculum. The small group solved complex science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry during 22 lessons (á 45–minute). Students’ network discussion were recorded in written notes (N=640) which were used as study data. A set of notes, referred to here as a ‘thread’, was used as the unit of analysis. The inter-coder agreement was regarded as substantial. The results indicated that SSMR emerges in a small group’s asynchronous CSCL inquiry process in the science domain. Hence, the results of Study III were in line with the previous Study I and Study II and revealed that metacognition cannot be reduced to the individual level alone. The findings also confirm that SSMR should be examined as a process, since SSMR can evolve during different phases and that different SSMR threads overlapped and intertwined. Although the classification of SSMR’s functions was applicable in the context of CSCL in a small group, the dominant function was different in the asynchronous CSCL inquiry in the small group in a science activity than in mathematical word problem solving among student dyads (Study II). Further, the use of different analytical methods provided complementary findings about students’ participation in SSMR. The findings suggest that it is not enough to code just a single written note or simply to examine who has the largest number of notes in the SSMR thread but also to examine the connections between the notes. As the findings of the present study are based on an in-depth analysis of a single small group, further cases were examined in Study IV, as well as looking at the SSMR’s focus, which was also studied in a face-to-face context. In Study IV, the general aim was to investigate the emergence of SSMR with a larger data set from an asynchronous CSCL inquiry process in small student groups carrying out science activities. The specific aims were to study the emergence of SSMR in the different phases of the process, students’ participation in SSMR, and the relation of SSMR’s focus to the quality of outcomes, which was not explored in previous studies. The participants were 12-year-old students from the same class as in Study III. Five small groups consisting of four students and one of five students (N=25) were involved in the study. The small groups solved ill-defined science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry over a total period of 22 hours. Written notes (N=4088) detailed the network discussions of the small groups and these constituted the study data. With these notes, SSMR threads were explored. As in Study III, the thread was used as the unit of analysis. In total, 332 notes were classified as forming 41 SSMR threads. Inter-coder agreement was assessed by three coders in the different phases of the analysis and found to be reliable. Multiple methods of analysis were used. Results showed that SSMR emerged in all the asynchronous CSCL inquiry processes in the small groups. However, the findings did not reveal any significantly changing trend in the emergence of SSMR during the process. As a main trend, the number of notes included in SSMR threads differed significantly in different phases of the process and small groups differed from each other. Although student participation was seen as highly dispersed between the students, there were differences between students and small groups. Furthermore, the findings indicated that the amount of SSMR during the process or participation structure did not explain the differences in the quality of outcomes for the groups. Rather, when SSMRs were focused on understanding and procedural matters, it was associated with achieving high quality learning outcomes. In turn, when SSMRs were focused on incidental and procedural matters, it was associated with low level learning outcomes. Hence, the findings imply that the focus of any emerging SSMR is crucial to the quality of the learning outcomes. Moreover, the findings encourage the use of multiple research methods for studying SSMR. In total, the four studies convincingly indicate that a phenomenon of socially shared metacognitive regulation also exists. This means that it was possible to define the concept of SSMR theoretically, to investigate it methodologically and to validate it empirically in two different learning contexts across dyads and small groups. In-depth micro-level case analysis in Studies I and III showed the possibility to capture and analyse in detail SSMR during the collaborative process, while in Studies II and IV, the analysis validated the emergence of SSMR in larger data sets. Hence, validation was tested both between two environments and within the same environments with further cases. As a part of this dissertation, SSMR’s detailed functions and foci were revealed. Moreover, the findings showed the important role of observable metacognitive experiences as the starting point of SSMRs. It was apparent that problems dealt with by the groups should be rather difficult if SSMR is to be made clearly visible. Further, individual students’ participation was found to differ between students and groups. The multiple research methods employed revealed supplementary findings regarding SSMR. Finally, when SSMR was focused on understanding and procedural matters, this was seen to lead to higher quality learning outcomes. Socially shared metacognition regulation should therefore be taken into consideration in students’ collaborative learning at school similarly to how an individual’s metacognition is taken into account in individual learning.
Resumo:
A teacher´s perception of a school subject affects a teacher´s teaching and by extension pupils´ learning. The main purpose of this thesis is to describe the variation in the ways class-teachers perceive teaching within science subjects and to illustrate how these teachers choose to work and why they choose as they do. This purpose is operationalized into three central research questions concerning a teacher´s perception of teaching, teachers´ experiences of working methods in the subject and different aspects that are consciously present when the teacher makes his or her choice of working methods. These aspects are viewed from two different perspectives: a subject educational perspective and a teacher perspective. The theoretical background of the study is interdisciplinary. The thesis is a qualitative study where the research approach is phenomenographic. The empirical investigation was made as two separate studies: a semistructured interview study (N = 15) followed by a stimulated recall study (N = 3), a combined interview and video-observation. Results from the empirical investigation indicate that regarding aims for science education teachers wish to awaken or maintain the pupils´ interest in nature and science and that the pupils within the science subjects shall build a base for fundamental general knowledge. As motives for teaching the science subjects teachers view the subjects as a foundation for everyday life, planning and democracy but also for pupils´ further studies and a possible career in the field. The interdisciplinary key competences and the care for the pupils´ well being are aspects that are consciously present when teachers make their choice of working methods. A great variation can be found in the teachers´ perceptions of the science subjects as subjects and of the working methods within these subjects. Teachers describe lack of time on their own part as well as for the pupil´s learning. Results from the empirical investigation also indicate that teachers modestly focus on aims for the teaching and communication regarding these aims. There seems to be an existing need for increased and qualitatively improved inservice education within these subjects.
Resumo:
The skill of programming is a key asset for every computer science student. Many studies have shown that this is a hard skill to learn and the outcomes of programming courses have often been substandard. Thus, a range of methods and tools have been developed to assist students’ learning processes. One of the biggest fields in computer science education is the use of visualizations as a learning aid and many visualization based tools have been developed to aid the learning process during last few decades. Studies conducted in this thesis focus on two different visualizationbased tools TRAKLA2 and ViLLE. This thesis includes results from multiple empirical studies about what kind of effects the introduction and usage of these tools have on students’ opinions and performance, and what kind of implications there are from a teacher’s point of view. The results from studies in this thesis show that students preferred to do web-based exercises, and felt that those exercises contributed to their learning. The usage of the tool motivated students to work harder during their course, which was shown in overall course performance and drop-out statistics. We have also shown that visualization-based tools can be used to enhance the learning process, and one of the key factors is the higher and active level of engagement (see. Engagement Taxonomy by Naps et al., 2002). The automatic grading accompanied with immediate feedback helps students to overcome obstacles during the learning process, and to grasp the key element in the learning task. These kinds of tools can help us to cope with the fact that many programming courses are overcrowded with limited teaching resources. These tools allows us to tackle this problem by utilizing automatic assessment in exercises that are most suitable to be done in the web (like tracing and simulation) since its supports students’ independent learning regardless of time and place. In summary, we can use our course’s resources more efficiently to increase the quality of the learning experience of the students and the teaching experience of the teacher, and even increase performance of the students. There are also methodological results from this thesis which contribute to developing insight into the conduct of empirical evaluations of new tools or techniques. When we evaluate a new tool, especially one accompanied with visualization, we need to give a proper introduction to it and to the graphical notation used by tool. The standard procedure should also include capturing the screen with audio to confirm that the participants of the experiment are doing what they are supposed to do. By taken such measures in the study of the learning impact of visualization support for learning, we can avoid drawing false conclusion from our experiments. As computer science educators, we face two important challenges. Firstly, we need to start to deliver the message in our own institution and all over the world about the new – scientifically proven – innovations in teaching like TRAKLA2 and ViLLE. Secondly, we have the relevant experience of conducting teaching related experiment, and thus we can support our colleagues to learn essential know-how of the research based improvement of their teaching. This change can transform academic teaching into publications and by utilizing this approach we can significantly increase the adoption of the new tools and techniques, and overall increase the knowledge of best-practices. In future, we need to combine our forces and tackle these universal and common problems together by creating multi-national and multiinstitutional research projects. We need to create a community and a platform in which we can share these best practices and at the same time conduct multi-national research projects easily.
Resumo:
Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.
Resumo:
The central theme of this thesis is the emancipation and further development of learning activity in higher education in the context of the ongoing digital transformation of our societies. It was developed in response to the highly problematic mainstream approach to digital re-instrumentation of teaching and studying practises in contemporary higher education. The mainstream approach is largely based on centralisation, standardisation, commoditisation, and commercialisation, while re-producing the general patterns of control, responsibility, and dependence that are characteristic for activity systems of schooling. Whereas much of educational research and development focuses on the optimisation and fine-tuning of schooling, the overall inquiry that is underlying this thesis has been carried out from an explicitly critical position and within a framework of action science. It thus conceptualises learning activity in higher education not only as an object of inquiry but also as an object to engage with and to intervene into from a perspective of intentional change. The knowledge-constituting interest of this type of inquiry can be tentatively described as a combination of heuristic-instrumental (guidelines for contextualised action and intervention), practical-phronetic (deliberation of value-rational aspects of means and ends), and developmental-emancipatory (deliberation of issues of power, self-determination, and growth) aspects. Its goal is the production of orientation knowledge for educational practise. The thesis provides an analysis, argumentation, and normative claim on why the development of learning activity should be turned into an object of individual|collective inquiry and intentional change in higher education, and why the current state of affairs in higher education actually impedes such a development. It argues for a decisive shift of attention to the intentional emancipation and further development of learning activity as an important cultural instrument for human (self-)production within the digital transformation. The thesis also attempts an in-depth exploration of what type of methodological rationale can actually be applied to an object of inquiry (developing learning activity) that is at the same time conceptualised as an object of intentional change within the ongoing digital transformation. The result of this retrospective reflection is the formulation of “optimally incomplete” guidelines for educational R&D practise that shares the practicalphronetic (value related) and developmental-emancipatory (power related) orientations that had been driving the overall inquiry. In addition, the thesis formulates the instrumental-heuristic knowledge claim that the conceptual instruments that were adapted and validated in the context of a series of intervention studies provide means to effectively intervene into existing practise in higher education to support the necessary development of (increasingly emancipated) networked learning activity. It suggests that digital networked instruments (tools and services) generally should be considered and treated as transient elements within critical systemic intervention research in higher education. It further argues for the predominant use of loosely-coupled, digital networked instruments that allow for individual|collective ownership, control, (co-)production, and re-use in other contexts and for other purposes. Since the range of digital instrumentation options is continuously expanding and currently shows no signs of an imminent slow-down or consolidation, individual and collective exploration and experimentation of this realm needs to be systematically incorporated into higher education practise.
Resumo:
The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
The general aim of the thesis was to study university students’ learning from the perspective of regulation of learning and text processing. The data were collected from the two academic disciplines of medical and teacher education, which share the features of highly scheduled study, a multidisciplinary character, a complex relationship between theory and practice and a professional nature. Contemporary information society poses new challenges for learning, as it is not possible to learn all the information needed in a profession during a study programme. Therefore, it is increasingly important to learn how to think and learn independently, how to recognise gaps in and update one’s knowledge and how to deal with the huge amount of constantly changing information. In other words, it is critical to regulate one’s learning and to process text effectively. The thesis comprises five sub-studies that employed cross-sectional, longitudinal and experimental designs and multiple methods, from surveys to eye tracking. Study I examined the connections between students’ study orientations and the ways they regulate their learning. In total, 410 second-, fourth- and sixth-year medical students from two Finnish medical schools participated in the study by completing a questionnaire measuring both general study orientations and regulation strategies. The students were generally deeply oriented towards their studies. However, they regulated their studying externally. Several interesting and theoretically reasonable connections between the variables were found. For instance, self-regulation was positively correlated with deep orientation and achievement orientation and was negatively correlated with non-commitment. However, external regulation was likewise positively correlated with deep orientation and achievement orientation but also with surface orientation and systematic orientation. It is argued that external regulation might function as an effective coping strategy in the cognitively loaded medical curriculum. Study II focused on medical students’ regulation of learning and their conceptions of the learning environment in an innovative medical course where traditional lectures were combined wth problem-based learning (PBL) group work. First-year medical and dental students (N = 153) completed a questionnaire assessing their regulation strategies of learning and views about the PBL group work. The results indicated that external regulation and self-regulation of the learning content were the most typical regulation strategies among the participants. In line with previous studies, self-regulation wasconnected with study success. Strictly organised PBL sessions were not considered as useful as lectures, although the students’ views of the teacher/tutor and the group were mainly positive. Therefore, developers of teaching methods are challenged to think of new solutions that facilitate reflection of one’s learning and that improve the development of self-regulation. In Study III, a person-centred approach to studying regulation strategies was employed, in contrast to the traditional variable-centred approach used in Study I and Study II. The aim of Study III was to identify different regulation strategy profiles among medical students (N = 162) across time and to examine to what extent these profiles predict study success in preclinical studies. Four regulation strategy profiles were identified, and connections with study success were found. Students with the lowest self-regulation and with an increasing lack of regulation performed worse than the other groups. As the person-centred approach enables us to individualise students with diverse regulation patterns, it could be used in supporting student learning and in facilitating the early diagnosis of learning difficulties. In Study IV, 91 student teachers participated in a pre-test/post-test design where they answered open-ended questions about a complex science concept both before and after reading either a traditional, expository science text or a refutational text that prompted the reader to change his/her beliefs according to scientific beliefs about the phenomenon. The student teachers completed a questionnaire concerning their regulation and processing strategies. The results showed that the students’ understanding improved after text reading intervention and that refutational text promoted understanding better than the traditional text. Additionally, regulation and processing strategies were found to be connected with understanding the science phenomenon. A weak trend showed that weaker learners would benefit more from the refutational text. It seems that learners with effective learning strategies are able to pick out the relevant content regardless of the text type, whereas weaker learners might benefit from refutational parts that contrast the most typical misconceptions with scientific views. The purpose of Study V was to use eye tracking to determine how third-year medical studets (n = 39) and internal medicine residents (n = 13) read and solve patient case texts. The results revealed differences between medical students and residents in processing patient case texts; compared to the students, the residents were more accurate in their diagnoses and processed the texts significantly faster and with a lower number of fixations. Different reading patterns were also found. The observed differences between medical students and residents in processing patient case texts could be used in medical education to model expert reasoning and to teach how a good medical text should be constructed. The main findings of the thesis indicate that even among very selected student populations, such as high-achieving medical students or student teachers, there seems to be a lot of variation in regulation strategies of learning and text processing. As these learning strategies are related to successful studying, students enter educational programmes with rather different chances of managing and achieving success. Further, the ways of engaging in learning seldom centre on a single strategy or approach; rather, students seem to combine several strategies to a certain degree. Sometimes, it can be a matter of perspective of which way of learning can be considered best; therefore, the reality of studying in higher education is often more complicated than the simplistic view of self-regulation as a good quality and external regulation as a harmful quality. The beginning of university studies may be stressful for many, as the gap between high school and university studies is huge and those strategies that were adequate during high school might not work as well in higher education. Therefore, it is important to map students’ learning strategies and to encourage them to engage in using high-quality learning strategies from the beginning. Instead of separate courses on learning skills, the integration of these skills into course contents should be considered. Furthermore, learning complex scientific phenomena could be facilitated by paying attention to high-quality learning materials and texts and other support from the learning environment also in the university. Eye tracking seems to have great potential in evaluating performance and growing diagnostic expertise in text processing, although more research using texts as stimulus is needed. Both medical and teacher education programmes and the professions themselves are challenging in terms of their multidisciplinary nature and increasing amounts of information and therefore require good lifelong learning skills during the study period and later in work life.