5 resultados para science and technology for all
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Process development will be largely driven by the main equipment suppliers. The reason for this development is their ambition to supply complete plants or process systems instead of single pieces of equipment. The pulp and paper companies' interest lies in product development, as their main goal is to create winning brands and effective brand management. Design engineering companies will find their niche in detail engineering based on approved process solutions. Their development work will focus on increasing the efficiency of engineering work. Process design is a content-producing profession, which requires certain special characteristics: creativity, carefulness, the ability to work as a member of a design team according to time schedules and fluency in oral as well as written presentation. In the future, process engineers will increasingly need knowledge of chemistry as well as information and automation technology. Process engineering tools are developing rapidly. At the moment, these tools are good enough for static sizing and balancing, but dynamic simulation tools are not yet good enough for the complicated chemical reactions of pulp and paper chemistry. Dynamic simulation and virtual mill models are used as tools for training the operators. Computational fluid dynamics will certainlygain ground in process design.
Resumo:
Biotechnology has been recognized as the key strategic technology for industrial growth. The industry is heavily dependent on basic research. Finland continues to rank in the top 10 of Europe's most innovative countries in terms of tax-policy, education system, infrastructure and the number of patents issued. Regardless of the excellent statistical results, the output of this innovativeness is below acceptable. Research on the issues hindering the output creation has already been done and the identifiable weaknesses in the Finland's National Innovation system are the non-existent growth of entrepreneurship and the missing internationalization. Finland is proven to have all the enablers of the innovation policy tools, but is lacking the incentives and rewards to push the enablers, such as knowledge and human capital, forward. Science Parks are the biggest operator in research institutes in the Finnish Science and Technology system. They exist with the purpose of speeding up the commercialization process of biotechnology innovations which usually include technological uncertainty, technical inexperience, business inexperience and high technology cost. Innovation management only internally is a rather historic approach, current trend drives towards open innovation model with strong triple helix linkages. The evident problems in the innovation management within the biotechnology industry are examined through a case study approach including analysis of the semi-structured interviews which included biotechnology and business expertise from Turku School of Economics. The results from the interviews supported the theoretical implications as well as conclusions derived from the pilot survey, which focused on the companies inside Turku Science Park network. One major issue that the Finland's National innovation system is struggling with is the fact that it is technology driven, not business pulled. Another problem is the university evaluation scale which focuses more on number of graduates and short-term factors, when it should put more emphasis on the cooperation success in the long-term, such as the triple helix connections with interaction and knowledge distribution. The results of this thesis indicated that there is indeed requirement for some structural changes in the Finland's National innovation system and innovation policy in order to generate successful biotechnology companies and innovation output. There is lack of joint output and scales of success, lack of people with experience, lack of language skills, lack of business knowledge and lack of growth companies.
Resumo:
The advancement of science and technology makes it clear that no single perspective is any longer sufficient to describe the true nature of any phenomenon. That is why the interdisciplinary research is gaining more attention overtime. An excellent example of this type of research is natural computing which stands on the borderline between biology and computer science. The contribution of research done in natural computing is twofold: on one hand, it sheds light into how nature works and how it processes information and, on the other hand, it provides some guidelines on how to design bio-inspired technologies. The first direction in this thesis focuses on a nature-inspired process called gene assembly in ciliates. The second one studies reaction systems, as a modeling framework with its rationale built upon the biochemical interactions happening within a cell. The process of gene assembly in ciliates has attracted a lot of attention as a research topic in the past 15 years. Two main modelling frameworks have been initially proposed in the end of 1990s to capture ciliates’ gene assembly process, namely the intermolecular model and the intramolecular model. They were followed by other model proposals such as templatebased assembly and DNA rearrangement pathways recombination models. In this thesis we are interested in a variation of the intramolecular model called simple gene assembly model, which focuses on the simplest possible folds in the assembly process. We propose a new framework called directed overlap-inclusion (DOI) graphs to overcome the limitations that previously introduced models faced in capturing all the combinatorial details of the simple gene assembly process. We investigate a number of combinatorial properties of these graphs, including a necessary property in terms of forbidden induced subgraphs. We also introduce DOI graph-based rewriting rules that capture all the operations of the simple gene assembly model and prove that they are equivalent to the string-based formalization of the model. Reaction systems (RS) is another nature-inspired modeling framework that is studied in this thesis. Reaction systems’ rationale is based upon two main regulation mechanisms, facilitation and inhibition, which control the interactions between biochemical reactions. Reaction systems is a complementary modeling framework to traditional quantitative frameworks, focusing on explicit cause-effect relationships between reactions. The explicit formulation of facilitation and inhibition mechanisms behind reactions, as well as the focus on interactions between reactions (rather than dynamics of concentrations) makes their applicability potentially wide and useful beyond biological case studies. In this thesis, we construct a reaction system model corresponding to the heat shock response mechanism based on a novel concept of dominance graph that captures the competition on resources in the ODE model. We also introduce for RS various concepts inspired by biology, e.g., mass conservation, steady state, periodicity, etc., to do model checking of the reaction systems based models. We prove that the complexity of the decision problems related to these properties varies from P to NP- and coNP-complete to PSPACE-complete. We further focus on the mass conservation relation in an RS and introduce the conservation dependency graph to capture the relation between the species and also propose an algorithm to list the conserved sets of a given reaction system.