13 resultados para satellite segment
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Summary
Resumo:
The main objective of this study was todo a statistical analysis of ecological type from optical satellite data, using Tipping's sparse Bayesian algorithm. This thesis uses "the Relevence Vector Machine" algorithm in ecological classification betweenforestland and wetland. Further this bi-classification technique was used to do classification of many other different species of trees and produces hierarchical classification of entire subclasses given as a target class. Also, we carried out an attempt to use airborne image of same forest area. Combining it with image analysis, using different image processing operation, we tried to extract good features and later used them to perform classification of forestland and wetland.
Resumo:
Menestyäkseen nykymaailmassa ihmiset ovat turvautuneet toisiinsa muodostaen samallaerilaisia yhteisöjä ja verkostoja. Näille yhteisöille on tunnusomaista, että niissä vaikuttavien jäsenien ajatustavat yhtyvät keskenään. Yhteisöissä syntyy uusia ideoita ja keksintöjä. Niiden välittäminen maailmalle on usein kuitenkin ongelmallista. Digitaalisuus, Internet ja monet muut uudet teknologiat tuovat yhden ratkaisun ongelmaan. Eräs uuden teknologian mahdollistama kanava on yhteisötelevisio, jonka kautta yhteisön viestintää voidaan tehokkaasti välittää. Yhteisöilläei kuitenkaan ole teknistä taitoa toteuttaa tällaista palvelua. Yhteisöille, kuten pk-yrityksille, kouluille, seuroille, yhdistyksille ja jopa yksittäisille ihmisille, tuleekin pystyä tarjoamaan valmis konsepti, joka on helposti heidän käytettävissään. Tämä diplomityö toimii teknisenä pohjana Finnish Satellite Television Oy:n yhteisö-tv -palvelukonseptille, joka tullaan ottamaan laajamittaiseen käyttöön vuoden 2007 aikana. Työssä käydään läpi yhteisön ja yhteisöllisyyden tunnusmerkit ja peruspiirteet, luodaan katsaus yhteisötelevision alkutaipaleisiin, nykytilaan ja sen eri ratkaisuihin. Lisäksi tutustutaan yhteisö-tv:n kansainvälisiin ja kotimaisiin kokeiluihin ja pilottiprojekteihin. Työn teknisessä osassa tutkitaan yhteisötelevision mahdollistaviin teknologioihin, siirtoteihin sekä digitaalisiin tuotantojärjestelmiin. Lopuksi työssä kootaan yhteen käytettävyydeltään, liikutettavuudeltaan ja kustannustehokkuudeltaan sopivimmat tekniset toteutusvaihtoehdot konseptin käyttöönottoa varten.
Resumo:
The principal aim of this study is to clarify the requirements of segment reporting and compare the requirements with the actual! implementation on different business lines. The empirical part was concluded by interviewing randomly selected companies that are publicly listed on the Helsinki Exchanges. The theoretical part of the study (chapters 2 and 3) will give basic information about shifting to IAS -standards and the requirements of IAS -standards. In order to meet the principal aim, a pre-empiric research was conducted by studying the annual accounts (year 2002) of randomly selected companies that already follow the IAS -standards of reporting. The companies in the pre-empiric research consist of both domestic and foreign companies. The aim of the pre-empiric study was to give a basis for the interview process on the empiric part of the study. The study indicates that implementing segment reporting has not brought any major concerns or problems. This is due to the fact that most companies that were examined - being publicly listed companies - have traditionally had a clear division between their geographical and commercial segments, and also been obliged to give reports according to these segments. In case of changes in corporate structure, shifting on new lines of businesses or downsizing of operations, the problems in reporting according to IAS -standards, may arise. Such changes will also require changes on information systems, providing the essential information for segment reporting. According to this study, most companies choose the commercial segment as their primary segment for reporting. The pre-empiric study indicates, that most of the companies already following the IAS -standards, still have a lot of improvement to do, in order to meet all the IAS requirements.
Resumo:
In this work we study the classification of forest types using mathematics based image analysis on satellite data. We are interested in improving classification of forest segments when a combination of information from two or more different satellites is used. The experimental part is based on real satellite data originating from Canada. This thesis gives summary of the mathematics basics of the image analysis and supervised learning , methods that are used in the classification algorithm. Three data sets and four feature sets were investigated in this thesis. The considered feature sets were 1) histograms (quantiles) 2) variance 3) skewness and 4) kurtosis. Good overall performances were achieved when a combination of ASTERBAND and RADARSAT2 data sets was used.
Resumo:
The present study investigates the spatial and spectral discrimination potential for grassland patches in the inner Turku Archipelago using Landsat Thematic Mapper satellite imagery. The spatial discrimination potential was computed through overlay analysis using official grassland parcel data and a hypothetical 30 m resolution satellite image capturing the site. It found that Landsat TM imagery’s ability to retrieve pure or near-pure pixels (90% purity or more) from grassland patches smaller than 1 hectare was limited to 13% success, compared to 52% success when upscaling the resolution to 10 x 10 m pixel size. Additionally, the perimeter/area patch metric is proposed as a predictor for the suitability of the spatial resolution of input imagery. Regression analysis showed that there is a strong negative correlation between a patch’s perimeter/area ratio and its pure pixel potential. The study goes on to characterise the spectral response and discrimination potential for the five main grassland types occurring in the study area: recreational grassland, traditional pasture, modern pasture, fodder production grassland and overgrown grassland. This was done through the construction of spectral response curves, a coincident spectral plot and a contingency matrix as well as by calculating the transformed divergence for the spectral signatures, all based on training samples from the TM imagery. Substantial differences in spectral discrimination potential between imagery from the beginning of the growing season and the middle of summer were found. This is because the spectral responses for these five grassland types converge as the peak of the growing season draws nearer. Recreational grassland shows a consistent discrimination advantage over other grassland types, whereas modern pasture is most easily confused. Traditional pasture land, perhaps the most biologically valuable grassland type, can be spectrally discriminated from other grassland types with satisfactory success rates provided early growing season imagery is used.