3 resultados para respiratory diseases
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Substances emitted into the atmosphere by human activities in urban and industrial areas cause environmental problems such as air quality degradation, respiratory diseases, climate change, global warming, and stratospheric ozone depletion. Volatile organic compounds (VOCs) are major air pollutants, emitted largely by industry, transportation and households. Many VOCs are toxic, and some are considered to be carcinogenic, mutagenic, or teratogenic. A wide spectrum of VOCs is readily oxidized photocatalytically. Photocatalytic oxidation (PCO) over titanium dioxide may present a potential alternative to air treatment strategies currently in use, such as adsorption and thermal treatment, due to its advantageous activity under ambient conditions, although higher but still mild temperatures may also be applied. The objective of the present research was to disclose routes of chemical reactions, estimate the kinetics and the sensitivity of gas-phase PCO to reaction conditions in respect of air pollutants containing heteroatoms in their molecules. Deactivation of the photocatalyst and restoration of its activity was also taken under consideration to assess the practical possibility of the application of PCO to the treatment of air polluted with VOCs. UV-irradiated titanium dioxide was selected as a photocatalyst for its chemical inertness, non-toxic character and low cost. In the present work Degussa P25 TiO2 photocatalyst was mostly used. In transient studies platinized TiO2 was also studied. The experimental research into PCO of following VOCs was undertaken: - methyl tert-butyl ether (MTBE) as the basic oxygenated motor fuel additive and, thus, a major non-biodegradable pollutant of groundwater; - tert-butyl alcohol (TBA) as the primary product of MTBE hydrolysis and PCO; - ethyl mercaptan (ethanethiol) as one of the reduced sulphur pungent air pollutants in the pulp-and-paper industry; - methylamine (MA) and dimethylamine (DMA) as the amino compounds often emitted by various industries. The PCO of VOCs was studied using a continuous-flow mode. The PCO of MTBE and TBA was also studied by transient mode, in which carbon dioxide, water, and acetone were identified as the main gas-phase products. The volatile products of thermal catalytic oxidation (TCO) of MTBE included 2-methyl-1-propene (2-MP), carbon monoxide, carbon dioxide and water; TBA decomposed to 2-MP and water. Continuous PCO of 4 TBA proceeded faster in humid air than dry air. MTBE oxidation, however, was less sensitive to humidity. The TiO2 catalyst was stable during continuous PCO of MTBE and TBA above 373 K, but gradually lost activity below 373 K; the catalyst could be regenerated by UV irradiation in the absence of gas-phase VOCs. Sulphur dioxide, carbon monoxide, carbon dioxide and water were identified as ultimate products of PCO of ethanethiol. Acetic acid was identified as a photocatalytic oxidation by-product. The limits of ethanethiol concentration and temperature, at which the reactor performance was stable for indefinite time, were established. The apparent reaction kinetics appeared to be independent of the reaction temperature within the studied limits, 373 to 453 K. The catalyst was completely and irreversibly deactivated with ethanethiol TCO. Volatile PCO products of MA included ammonia, nitrogen dioxide, nitrous oxide, carbon dioxide and water. Formamide was observed among DMA PCO products together with others similar to the ones of MA. TCO for both substances resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide and water. No deactivation of the photocatalyst during the multiple long-run experiments was observed at the concentrations and temperatures used in the study. PCO of MA was also studied in the aqueous phase. Maximum efficiency was achieved in an alkaline media, where MA exhibited high fugitivity. Two mechanisms of aqueous PCO – decomposition to formate and ammonia, and oxidation of organic nitrogen directly to nitrite - lead ultimately to carbon dioxide, water, ammonia and nitrate: formate and nitrite were observed as intermediates. A part of the ammonia formed in the reaction was oxidized to nitrite and nitrate. This finding helped in better understanding of the gasphase PCO pathways. The PCO kinetic data for VOCs fitted well to the monomolecular Langmuir- Hinshelwood (L-H) model, whereas TCO kinetic behaviour matched the first order process for volatile amines and the L-H model for others. It should be noted that both LH and the first order equations were only the data fit, not the real description of the reaction kinetics. The dependence of the kinetic constants on temperature was established in the form of an Arrhenius equation.
Resumo:
Asthma and allergy are common diseases and their prevalence is increasing. One of the hypotheses that explains this trend is exposure to inhalable chemicals such as traffi c-related air pollution. Epidemiological research supports this theory, as a correlation between environmental chemicals and allergic respiratory diseases has been found. In addition to ambient airborne particles, one may be exposed to engineered nanosized materials that are actively produced due to their favorable physico-chemical properties compared to their bulk size counterparts. On the cellular level, improper activity of T helper (Th) cells has been connected to allergic reactions. Th cells can differentiate into functionally different effector subsets, which are identifi ed according to their characteristic cytokine profi les resulting in specifi c ability to communicate with other cells. Th2 cells activate humoral immunity and stimulate eradication of extracellular pathogens. However, persistent predominance of Th2 cells is involved in a development of number of allergic diseases. The cytokine environment at the time of antigen recognition is the major factor determining the polarization of a naïve Th cell. Th2 cell differentiation is initiated by IL4, which signals via transcription factor STAT6. Although the importance of this pathway has been evaluated in the mouse studies, the signaling components involved have been largely unknown. The aim of this thesis was to identify molecules, which are under the control of IL4 and STAT6 in Th cells. This was done by using system-level analysis of STAT6 target genes at genome, mRNA and protein level resulting in identifi cation of various genes previously not connected to Th2 cell phenotype acquisition. In the study, STAT6-mediated primary and secondary target genes were dissection from each other and a detailed transcriptional kinetics of Th2 cell polarization of naïve human CD4+ T cells was collected. Integration of these data revealed the hierarchy of molecular events that mediates the differentiation towards Th2 cell phenotype. In addition, the results highlighted the importance of exploiting proteomics tools to complement the studies on STAT6 target genes identifi ed through transcriptional profi ling. In the last subproject, the effects of the exposure with ZnO and TiO2 nanoparticles was analyzed in Jurkat T cell line and in primary human monocyte-derived macrophages and dendritic cells to evaluate their toxicity and potential to cause infl ammation. Identifi cation of ZnO-derived gene expression showed that the same nanoparticles may elicit markedly distinctive responses in different cell types, thus underscoring the need for unbiased profi ling of target genes and pathways affected. The results gave additional proof that the cellular response to nanosized ZnO is due to leached Zn2+ ions. The approach used in ZnO and TiO2 nanoparticle study demonstrated the value of assessing nanoparticle responses through a toxicogenomics approach. The increased knowledge of Th2 cell signaling will hopefully reveal new therapeutic nodes and eventually improve our possibilities to prevent and tackle allergic infl ammatory diseases.
Resumo:
Because of the heavily overlapping symptoms, pathogen-specific diagnosis and treatment of infectious diseases is difficult based on clinical symptoms alone. Therefore, patients are often treated empirically. More efficient treatment and management of infectious diseases would require rapid point-of-care compatible in vitro diagnostic methods. However, current point-of-care methods are unsatisfactory in performance and in cost structure. The lack of pointof- care methods results in unnecessary use of antibiotics, suboptimal use of virus-specific drugs, and compromised patient care. In this thesis, the applicability of a two-photon excitation fluorometry is evaluated as a tool for rapid detection of infectious diseases. New separation-free immunoassay methodologies were developed and validated for the following application areas: general inflammation markers, pathogen-specific antibodies, pathogen-specific antigens, and antimicrobial susceptibility testing. In addition, dry-reagent methodology and nanoparticulate tracers are introduced in context to the technique. The results show that the new assay technique is a versatile tool for rapid detection of infectious diseases in many different application areas. One particularly attractive area is rapid multianalyte testing of respiratory infections, where the technique was shown to allow simple assay protocols and comparable performance to the state-of-the-art laboratory methods. If implemented in clinical diagnostic use, the new methods could improve diagnostic testing routines, especially in rapid testing of respiratory tract infections.