10 resultados para replacement of corn
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Selostus: Rypsipuristeen asteittainen korvaaminen pellavapuristeella lypsylehmien säilörehuun perustuvassa ruokinnassa
Resumo:
Työn tavoitteena on tankovalssaamon perusautomaation modernisointi Ovako Bar Oy Ab:n Imatran terästehtaalla. Vanha automaatiojärjestelmä on toteutettu 80-luvun puoli-välin tekniikalla käyttämällä Siemens Sicomp MMC 216 moniprosessori-tietokonetta, Siemens Simatic S5 logiikkayksiköitä sekä Siemens Simadyn D DC-käyttöjä. Modernisoinnin tarkoituksena on korvata vanha automaatiojärjestelmä Siemens PCS7 -järjestelmällä siten, että tankovalssaamon automaatiojärjestelmä voidaan liittää osaksi jo aiemmin modernisoituja, nykyisin PCS7 automaatiojärjestelmällä toteutettuja ratkaisu-ja. Valssaamon mekaniikka ei mahdollista tuotannon kasvattamista pelkästään uuden automaatiojärjestelmän avulla, joten modernisointi keskittyy parantamaan järjestelmän luotettavuutta ja helpottamaan ylläpitoa. Projekti päätettiin jakaa kolmeen osaan, jotka voidaan toteuttaa erillisinä osaprojekteina. Tärkein osaprojekti on MMC järjestelmän uusinta. Muut osaprojektit ovat DC-käyttöjen sekä ohjelmoitavien logiikkojen modernisointi. Osaprojektit valittiin siten, että mikä tahansa niistä voidaan toteuttaaerillisenä projektinaan, mikäli kaikkia osia ei voida mo-dernisoida samanaikaisesti budjetin asettamien rajoitusten vuoksi.
Resumo:
Power transformer is the most expensive equipment on a substation. It is always necessary to get needed benefit with the lowest expenses. Producing of power transformers with reduced insulation strength is one of the possible ways to reduce expenses. Exploitation of such transformers was begun in the end of 70-th in the last century. Protection from overvoltages was done with valve-type magnetic combined surge arresters with increased blanking voltage during switching overvoltages. Nowadays there is the necessity of replacement of those devices. That’s why modernized nonlinear surge arrester was invented. This master’s thesis is focused on the use research of that modernized device in comparison with usual nonlinear surge arresters. The goal is to show the lightning overvoltages level using different types of nonlinear surge arresters and then calculations of the lightning protection reliability.
Resumo:
The purpose of this work was to study the effect of aspen and alder on birch cooking and the quality of the pulp produced. Three different birch kraft pulps were studied. As a reference, pure aspen and alder were included. The laboratory trials were done at the UPM Research Centre in Lappeenranta, Finland. The materials used were birch, aspen and alder mill chips that were collected around the area of South-Carelia in Finland. The chips used in the study were pulped using a standard kraft process. The pulps including birch fibres were ECF-bleached at laboratory scale to a target brightness of 85 %. The bleached pulps were beaten at low consistency by a laboratory Voith Sulzer refiner and tested for optical and physical properties. The theoretical part is a study of hardwoods that takes into accounts the differences between birch, aspen and alder. Major sub-areas were fibre and paper-technical properties as well as chemical composition and their influence on the different properties. The pulp properties of birch, aspen and alder found in previous studies were reported. Russian hardwood forest resources were also investigated. The fundamentals of kraft pulping and bleaching were studied at the end of theoretical part. The major effect of replacing birch with aspen and alder was the deterioration (lowering) of tensile and tear strengths. In other words, addition of aspen and alder to a birch furnish reduced strength properties. The reinforcement ability of the tested pulps was the following: 100 % birch > 80 % birch, 20 % aspen > 70 % birch, 20 % aspen, 10 % alder. The second thing noted was that blending of birch together with aspen and alder give better smoothness, optical properties and also formation. It can be concluded, that replacement of birch with alder during cooking by more than 10 % can negatively affect on the paper-technical properties of birch pulp. Mixing pure birch and aspen pulps would be more beneficial when producing printing paper made from chemical pulp.
Resumo:
Background: Pacemaker implantation (PMI) may predispose to venous thromboembolism (VTE) and obstruction (VO). This prospective study aimed at quantifying changes in venous calibers, and at determining the incidence of symptomatic and asymptomatic VTE/VO after PMI. Further goals included an assessment of the role of transesophageal echocardiography (TEE) in the diagnosis of lead-related central venous thrombi (CVT), and determination of predictors for VTE/VO. Methods: 150 (mean age 67; 61% male) consecutive patients with first PMI were enrolled and followed for 6 months. Contrast venography was performed at baseline and 6 months after PMI to measure venous diameters, and to detect stenosis, total occlusions and thrombi. TEE was conducted in 66 patients. Based on clinical suspicion, work-up for pulmonary embolism (PE) or acute deep vein thrombosis (DVT) were performed as needed. A total of 50 cases underwent longer-term (mean 2.4 years) follow-up venography. All cases with VTE/VO during the initial 6 months, and their matched controls, were selected for a case-control study focused on possible predictive role of laboratory and patient-related factors for the development of VTE/VO. Results: 10 (7 %) patients were found to have baseline venous abnormalities (e.g. 8 obstructions). Mean venous diameters diminished significantly during the first 6 months, but no further reduction occurred in late follow-up. New VO was discovered in 19 patients (14 %; 14 stenosis, 5 total occlusions; all asymptomatic). Small non-obstructive thrombi were found in 20/140 (14 %) 6-month venograms. TEE at 6 months disclosed CVT in 6 (9 %) patients. One (0.7 %) patient had acute symptomatic upper-extremity DVT, and PE was discovered in 5/150 (3.3 %) patients during the first 6 months with no further cases thereafter. At 6 months, the total number of cases with VTE/VO amounted to 47 (31.3 %). Additionally, the later 2-year venograms (n=50) disclosed 4 (8 %) total occlusions and 1 (2 %) stenosis. In the case-control study, no parameter was predictive of venous end-points as a single variable, but there appeared to be significant clustering of traditional VTE risk-factors among the cases. Laboratory parameters showed a definite acute hypercoagulative state induced by PMI, but its degree did not predict subsequent development of VTE/VO. Conclusions: This study shows that VTE/VO is relatively common after PMI with an overall incidence of at least 30 %. Although the majority of the lesions are asymptomatic and clinically benign, cases of PE were also encountered, and totally occluded veins may hamper future upgrading or replacement of pacing system. Venous complications seem difficult to prognosticate as firm predictors were not identified from a wide range of parameters analyzed in this study, although clustering of classic VTE risk factors may be a predisposing factor. Parameters related to implantation procedure or pacing systems and the severity of implantation-induced trauma did not emerge as predictors.
Resumo:
Interest to hole-doped mixed-valence manganite perovskites is connected to the ‘colossal’ magnetoresistance. This effect or huge drop of the resistivity, ρ, in external magnetic field, B, attains usually the maximum value near the ferromagnetic Curie temperature, TC. In this thesis are investigated conductivity mechanisms and magnetic properties of the manganite perovskite compounds LaMnO3+, La1-xCaxMnO3, La1-xCaxMn1-yFeyO3 and La1- xSrxMn1-yFeyO3. When the present work was started the key role of the phase separation and its influence on the properties of the colossal magnetoresistive materials were not clear. Our main results are based on temperature dependencies of the magnetoresistance and magnetothermopower, investigated in the temperature interval of 4.2 - 300 K in magnetic fields up to 10 T. The magnetization was studied in the same temperature range in weak (up to 0.1 T) magnetic fields. LaMnO3+δ is the parent compound for preparation of the hole-doped CMR materials. The dependences of such parameters as the Curie temperature, TC, the Coulomb gap, Δ, the rigid gap, γ, and the localization radius, a, on pressure, p, are observed in LaMnO3+δ. It has been established that the dependences above can be interpreted by increase of the electron bandwidth and decrease of the polaron potential well when p is increased. Generally, pressure stimulates delocalization of the electrons in LaMnO3+δ. Doping of LaMnO3 with Ca, leading to La1-xCaxMnO3, changes the Mn3+/Mn4+ ratio significantly and brings an additional disorder to the crystal lattice. Phase separation in a form of mixture of the ferromagnetic and the spin glass phases was observed and investigated in La1- xCaxMnO3 at x between 0 and 0.4. Influence of the replacement of Mn by Fe is studied in La0.7Ca0.3Mn1−yFeyO3 and La0.7Sr0.3Mn1−yFeyO3. Asymmetry of the soft Coulomb gap and of the rigid gap in the density of localized states, small shift of the centre of the gaps with respect to the Fermi level and cubic asymmetry of the density of states are obtained in La0.7Ca0.3Mn1−yFeyO3. Damping of TC with y is connected to breaking of the double-exchange interaction by doping with Fe, whereas the irreversibility and the critical behavior of the magnetic susceptibility are determined by the phase separation and the frustrated magnetic state of La0.7Sr0.3Mn1−yFeyO3.
Resumo:
Forest biomass represents a geographically distributed feedstock, and geographical location affects the greenhouse gas (GHG) performance of a given forest-bioenergy system in several ways. For example, biomass availability, forest operations, transportation possibilities and the distances involved, biomass end-use possibilities, fossil reference systems, and forest carbon balances all depend to some extent on location. The overall objective of this thesis was to assess the GHG emissions derived from supply and energy-utilization chains of forest biomass in Finland, with a specific focus on the effect of location in relation to forest biomass’s availability and the transportation possibilities. Biomass availability and transportation-network assessments were conducted through utilization of geographical information system methods, and the GHG emissions were assessed by means of lifecycle assessment. The thesis is based on four papers in which forest biomass supply on industrial scale was assessed. The feedstocks assessed in this thesis include harvesting residues, smalldiameter energy wood and stumps. The principal implication of the findings in this thesis is that in Finland, the location and availability of biomass in the proximity of a given energyutilization or energy-conversion plant is not a decisive factor in supply-chain GHG emissions or the possible GHG savings to be achieved with forest-biomass energy use. Therefore, for the greatest GHG reductions with limited forest-biomass resources, energy utilization of forest biomass in Finland should be directed to the locations where most GHG savings are achieved through replacement of fossil fuels. Furthermore, one should prioritize the types of forest biomass with the lowest direct supply-chain GHG emissions (e.g., from transport and comminution) and the lowest indirect ones (in particular, soil carbon-stock losses), regardless of location. In this respect, the best combination is to use harvesting residues in combined heat and power production, replacing peat or coal.
Resumo:
Bioprocess technology is a multidisciplinary industry that combines knowledge of biology and chemistry with process engineering. It is a growing industry because its applications have an important role in the food, pharmaceutical, diagnostics and chemical industries. In addition, the current pressure to decrease our dependence on fossil fuels motivates new, innovative research in the replacement of petrochemical products. Bioprocesses are processes that utilize cells and/or their components in the production of desired products. Bioprocesses are already used to produce fuels and chemicals, especially ethanol and building-block chemicals such as carboxylic acids. In order to enable more efficient, sustainable and economically feasible bioprocesses, the raw materials must be cheap and the bioprocesses must be operated at optimal conditions. It is essential to measure different parameters that provide information about the process conditions and the main critical process parameters including cell density, substrate concentrations and products. In addition to offline analysis methods, online monitoring tools are becoming increasingly important in the optimization of bioprocesses. Capillary electrophoresis (CE) is a versatile analysis technique with no limitations concerning polar solvents, analytes or samples. Its resolution and efficiency are high in optimized methods creating a great potential for rapid detection and quantification. This work demonstrates the potential and possibilities of CE as a versatile bioprocess monitoring tool. As a part of this study a commercial CE device was modified for use as an online analysis tool for automated monitoring. The work describes three offline CE analysis methods for the determination of carboxylic, phenolic and amino acids that are present in bioprocesses, and an online CE analysis method for the monitoring of carboxylic acid production during bioprocesses. The detection methods were indirect and direct UV, and laser-induced frescence. The results of this work can be used for the optimization of bioprocess conditions, for the development of more robust and tolerant microorganisms, and to study the dynamics of bioprocesses.
Resumo:
In the last decades, the chemical synthesis of short oligonucleotides has become an important aspect of study due to the discovery of new functions for nucleic acids such as antisense oligonucleotides (ASOs), aptamers, DNAzymes, microRNA (miRNA) and small interfering RNA (siRNA). The applications in modern therapies and fundamental medicine on the treatment of different cancer diseases, viral infections and genetic disorders has established the necessity to develop scalable methods for their cheaper and easier industrial manufacture. While small scale solid-phase oligonucleotide synthesis is the method of choice in the field, various challenges still remain associated with the production of short DNA and RNA-oligomers in very large quantities. On the other hand, solution phase synthesis of oligonucleotides offers a more predictable scaling-up of the synthesis and is amenable to standard industrial manufacture techniques. In the present thesis, various protocols for the synthesis of short DNA and RNA oligomers have been studied on a peracetylated and methylated β-cyclodextrin, and also on a pentaerythritol-derived support. On using the peracetylated and methylated β-cyclodextrin soluble supports, the coupling cycle was simplified by replacement of the typical 5′-O-(4,4′-dimethoxytrityl) protecting group with an acid-labile acetal-protected 5′-O-(1-methoxy-1-methylethyl) group, which upon acid-catalyzed methanolysis released easily removable volatile products. For this reason monomeric building blocks 5′-O-(1-methoxy-1-methylethyl) 3′-(2-cyano-ethyl-N,N-diisopropylphosphoramidite) were synthesized. Alternatively, on using the precipitative pentaerythritol support, novel 2´-O-(2-cyanoethyl)-5´-O-(1-methoxy-1-methylethyl) protected phosphoramidite building blocks for RNA synthesis have been prepared and their applicability by the synthesis of a pentamer was demonstrated. Similarly, a method for the preparation of short RNAs from commercially available 5´-O-(4,4´-dimethoxytrityl)-2´-O-(tert-butyldimethyl-silyl)ribonucleoside 3´-(2-cyanoethyl-N,N-diisopropylphosphoramidite) building blocks has been developed
Resumo:
Point-of-care (POC) –diagnostics is a field with rapidly growing market share. As these applications become more widely used, there is an increasing pressure to improve their performance to match the one of a central laboratory tests. Lanthanide luminescence has been widely utilized in diagnostics because of the numerous advantages gained by the utilization of time-resolved or anti-Stokes detection. So far the use of lanthanide labels in POC has been scarce due to limitations set by the instrumentation required for their detection and the shortcomings, e.g. low brightness, of these labels. Along with the advances in the research of lanthanide luminescence, and in the field of semiconductors, these materials are becoming a feasible alternative for the signal generation also in the future POC assays. The aim of this thesis was to explore ways of utilizing time-resolved detection or anti-Stokes detection in POC applications. The long-lived fluorescence for the time-resolved measurement can be produced with lanthanide chelates. The ultraviolet (UV) excitation required by these chelates is cumbersome to produce with POC compatible fluorescence readers. In this thesis the use of a novel light-harvesting ligand was studied. This molecule can be used to excite Eu(III)-ions at wavelengths extending up to visible part of the spectrum. An enhancement solution based on this ligand showed a good performance in a proof-of-concept -bioaffinity assay and produced a bright signal upon 365 nm excitation thanks to the high molar absorptivity of the chelate. These features are crucial when developing miniaturized readers for the time-resolved detection of fluorescence. Upconverting phosphors (UCPs) were studied as an internal light source in glucose-sensing dry chemistry test strips and ways of utilizing their various emission wavelengths and near-infrared excitation were explored. The use of nanosized NaYF :Yb3+,Tm3+-particles enabled the replacement of an external UV-light source with a NIR-laser and gave an additional degree of freedom in the optical setup of the detector instrument. The new method enabled a blood glucose measurement with results comparable to a current standard method of measuring reflectance. Microsized visible emitting UCPs were used in a similar manner, but with a broad absorbing indicator compound filtering the excitation and emission wavelengths of the UCP. This approach resulted in a novel way of benefitting from the non-linear relationship between the excitation power and emission intensity of the UCPs, and enabled the amplification of the signal response from the indicator dye.