4 resultados para renal and hepatic tissues
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Background: Metabolic syndrome (MetS) is a combination of several cardio-metabolic risk factors including obesity, hyperglycemia, hypertension and dyslipidemia. MetS has been associated with increased levels of apolipoprotein B (apoB) and low-density lipoprotein oxidation (OxLDL) and with an increased risk of cardiovascular disease and non-alcoholic fatty liver disease. Aims: To establish the relation of apoB and OxLDL with the MetS development and to determine the status of MetS as a risk factor for adverse liver changes and for subclinical atherosclerosis. Subjects and Methods: The present thesis is part of the two large scale population-based, prospective, observational studies. Cardiovascular Risk in Young Finns study was launched in 1980 including 3,596 subjects aged 3-18 years. Thereafter follow-up studies have been conducted regularly. In the latest follow-ups that were performed in 2001 (N=2,283) and 2007 (N=2,204), non-invasive ultrasound studies were introduced to the study protocol to measure subclinical atherosclerosis i.e. carotid intima-media thickness (IMT), carotid artery distensibility (Cdist) and brachial flow-mediated dilatation (FMD). Alanine-aminotransferase (ALT) and gammaglutamyltransferase (GGT) were measured in 2007 to assess liver function. The Bogalusa Heart Study is a long-term epidemiologic study of cardiovascular risk factors launched in 1972 in a biracial community of Bogalusa, Louisiana, USA. Total of 374 youths (aged 9-18 years at baseline in 1984-88) who underwent non-invasive ultrasound studies of the carotid artery as adults, were included in the analyses of the present thesis. Results: The odds ratios (95% confidence intervals) for MetS incidence during a 6-year follow-up by quartiles of apoB were 2.0(1.0-3.8) for the second quartile, 3.1(1.7-5.7) for the third quartile and 4.2(2.3-7.6) for the fourth quartile. OxLDL was not independently associated with incident MetS. Youth (aged 9-18 years) with MetS or with high body mass index were at 2-3 times the risk of having MetS, high IMT, and type 2 diabetes 24-years later as adults. IMT increased 79±7μm (mean±SEM) in subjects with MetS and 42±2μm in subjects without the MetS (P<0.0001) during 6- years. Subjects who lost the MetS diagnosis during 6-year follow-up had reduced IMT progression compared to persistent MetS group (0.036±0.005vs.0.079±0.010 mm, P=0.001) and reduced Cdist change compared to incident MetS group (-0.12±0.05vs.-0.38±0.10 %/mmHg, P=0.03) over 6-year follow-up. MetS predicted elevated ALT (β±SEM=0.380±0.052, P<0.0001 in men and 0.160±0.052, P=0.002 in women) and GGT (β±SEM=0.240±0.058, P<0.0001 in men and 0.262±0.053, P<0.0001 in women) levels after 6-years. Conclusions: These findings suggest that apoB may give additional information on early metabolic disturbances predisposing MetS. MetS may be used to identify individuals at increased risk of developing atherosclerosis and non-alcoholic liver disease. However, recovery from the MetS may have positive effects on liver and vascular properties.
Resumo:
Lysinuric protein intolerance (LPI) is a recessively inherited disorder characterised by reduced plasma and increased urinary levels of cationic amino acids (CAAs), protein malnutrition, growth failure and hyperlipidemia. Some patients develop severe immunological, renal and pulmonary complications. All Finnish patients share the same LPIFin mutation in the SLC7A7 gene that encodes CAA transporter y+LAT1. The aim of this study was to examine molecular factors contributing to the various symptoms, systemic metabolic and lipid profiles, and innate immune responses in LPI. The transcriptomes, metabolomes and lipidomes were analysed in whole-blood cells and plasma using RNA microarrays and gas or liquid chromatography-mass spectrometry techniques, respectively. Toll-like receptor (TLR) signalling in monocyte-derived macrophages exposed to pathogens was scrutinised using qRT-PCR and the Luminex technology. Altered levels of transcripts participating in amino acid transport, immune responses, apoptosis and pathways of hepatic and renal metabolism were identified in the LPI whole-blood cells. The patients had increased non-essential amino acid, triacylglycerol and fatty acid levels, and decreased plasma levels of phosphatidylcholines and practically all essential amino acids. In addition, elevated plasma levels of eight metabolites, long-chain triacylglycerols, two chemoattractant chemokines and nitric oxide correlated with the reduced glomerular function in the patients with kidney disease. Accordingly, it can be hypothesised that the patients have increased autophagy, inflammation, oxidative stress and apoptosis, leading to hepatic steatosis, uremic toxicity and altered intestinal microbe metabolism. Furthermore, the LPI macrophages showed disruption in the TLR2/1, TLR4 and TLR9 pathways, suggesting innate immune dysfunctions with an excessive response to bacterial infections but a deficient viral DNA response.
Resumo:
Positron Emission Tomography (PET) using 18F-FDG is playing a vital role in the diagnosis and treatment planning of cancer. However, the most widely used radiotracer, 18F-FDG, is not specific for tumours and can also accumulate in inflammatory lesions as well as normal physiologically active tissues making diagnosis and treatment planning complicated for the physicians. Malignant, inflammatory and normal tissues are known to have different pathways for glucose metabolism which could possibly be evident from different characteristics of the time activity curves from a dynamic PET acquisition protocol. Therefore, we aimed to develop new image analysis methods, for PET scans of the head and neck region, which could differentiate between inflammation, tumour and normal tissues using this functional information within these radiotracer uptake areas. We developed different dynamic features from the time activity curves of voxels in these areas and compared them with the widely used static parameter, SUV, using Gaussian Mixture Model algorithm as well as K-means algorithm in order to assess their effectiveness in discriminating metabolically different areas. Moreover, we also correlated dynamic features with other clinical metrics obtained independently of PET imaging. The results show that some of the developed features can prove to be useful in differentiating tumour tissues from inflammatory regions and some dynamic features also provide positive correlations with clinical metrics. If these proposed methods are further explored then they can prove to be useful in reducing false positive tumour detections and developing real world applications for tumour diagnosis and contouring.
Resumo:
Camilla Pelo Collagen Binding Integrins and Cancer Testis Antigens in Prostate Cancer and Melanoma Department of Biochemistry, MediCity Research Laboratory, University of Turku, Finland Annales Universitatis Turkuensis, Painosalama Oy, Turku, Finland 2016 ABSTRACT Prostate cancer is the second most common cancer in men worldwide. The incidence of melanoma, in turn, is increasing faster than any other cancer incidences. In Finland, more than 5000 prostate cancer and 1200 new melanoma cases are diagnosed each year. One approach to further understand the cellular processes involved in prostate cancer and melanoma is to gain better knowledge about alterations in gene expression and their potential impact on the progression of the diseases. This thesis is focused on expression studies in two gene families; integrins and cancer testis antigens (CT antigens), in human prostate adenocarcinoma and advanced human melanoma. Integrins are heterodimeric transmembrane receptors which regulate many important cellular processes such as cell proliferation, migration and survival. CT antigens are frequently expressed in different types of cancers, but are only expressed in testis in healthy individuals. CT antigens are also highly immunogenic proteins. Due to the properties mentioned above, integrins and CT antigens can function as target molecules for the development of cancer diagnostics and drugs. One of the main purposes of this thesis was to study the expression of the four collagen binding integrins α1β1, α2β1, α10β1, α11β1 and the cancer testis antigen 16 (CT16) in cancer cell lines and human tissues of prostate cancer and metastatic melanoma. Additional aims included studies on the biological role of CT16 and the abundance of CT16 in sera of advanced melanoma patients. The prognostic and diagnostic significance of CT16 and the collagen binding integrins were also evaluated. Expression studies on collagen binding integrins and the CT antigen CT16 in melanoma and prostate cancer were limited and the biological role of CT16 was unknown. In this thesis, the expression levels of α2β1 and α11β1 were found to be significantly altered in prostate cancer tissues. Integrin α2β1 decreased gradually during disease progression while α11 was elevated in prostate carcinoma compared to healthy tissues. In advanced melanoma, enhanced levels of α2 were associated with a significant shorter overall survival in advanced melanoma. In this thesis, CT16 was identified as a frequently expressed melanoma CT antigen with an anti-apoptotic function. To conclude, this thesis presents α2β1 and CT16, as potential and promising biomarkers for advanced melanoma. This thesis reports also the first functional study of CT16. Keywords: Collagen binding integrins, α1β1, α2β1, α10β1, α11β1, Cancer Testis antigens, CT16, melanoma, prostate cancer, expression