8 resultados para regional scale

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examines the local and regional scale determinants of biodiversity patterns using existing species and environmental data. The research focuses on agricultural environments that have experienced rapid declines of biodiversity during past decades. Existing digital databases provide vast opportunities for habitat mapping, predictive mapping of species occurrences and richness and understanding the speciesenvironment relationships. The applicability of these databases depends on the required accuracy and quality of the data needed to answer the landscape ecological and biogeographical questions in hand. Patterns of biodiversity arise from confounded effects of different factors, such as climate, land cover and geographical location. Complementary statistical approaches that can show the relative effects of different factors are needed in biodiversity analyses in addition to classical multivariate models. Better understanding of the key factors underlying the variation in diversity requires the analyses of multiple taxonomic groups from different perspectives, such as richness, occurrence, threat status and population trends. The geographical coincidence of species richness of different taxonomic groups can be rather limited. This implies that multiple geographical regions should be taken into account in order to preserve various groups of species. Boreal agricultural biodiversity and in particular, distribution and richness of threatened species is strongly associated with various grasslands. Further, heterogeneous agricultural landscapes characterized by moderate field size, forest patches and non-crop agricultural habitats enhance the biodiversity of rural environments. From the landscape ecological perspective, the major threats to Finnish agricultural biodiversity are the decline of connected grassland habitat networks, and general homogenization of landscape structure resulting from both intensification and marginalization of agriculture. The maintenance of key habitats, such as meadows and pastures is an essential task in conservation of agricultural biodiversity. Furthermore, a larger landscape context should be incorporated in conservation planning and decision making processes in order to respond to the needs of different species and to maintain heterogeneous rural landscapes and viable agricultural diversity in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acid sulfate (a.s.) soils constitute a major environmental issue. Severe ecological damage results from the considerable amounts of acidity and metals leached by these soils in the recipient watercourses. As even small hot spots may affect large areas of coastal waters, mapping represents a fundamental step in the management and mitigation of a.s. soil environmental risks (i.e. to target strategic areas). Traditional mapping in the field is time-consuming and therefore expensive. Additional more cost-effective techniques have, thus, to be developed in order to narrow down and define in detail the areas of interest. The primary aim of this thesis was to assess different spatial modeling techniques for a.s. soil mapping, and the characterization of soil properties relevant for a.s. soil environmental risk management, using all available data: soil and water samples, as well as datalayers (e.g. geological and geophysical). Different spatial modeling techniques were applied at catchment or regional scale. Two artificial neural networks were assessed on the Sirppujoki River catchment (c. 440 km2) located in southwestern Finland, while fuzzy logic was assessed on several areas along the Finnish coast. Quaternary geology, aerogeophysics and slope data (derived from a digital elevation model) were utilized as evidential datalayers. The methods also required the use of point datasets (i.e. soil profiles corresponding to known a.s. or non-a.s. soil occurrences) for training and/or validation within the modeling processes. Applying these methods, various maps were generated: probability maps for a.s. soil occurrence, as well as predictive maps for different soil properties (sulfur content, organic matter content and critical sulfide depth). The two assessed artificial neural networks (ANNs) demonstrated good classification abilities for a.s. soil probability mapping at catchment scale. Slightly better results were achieved using a Radial Basis Function (RBF) -based ANN than a Radial Basis Functional Link Net (RBFLN) method, narrowing down more accurately the most probable areas for a.s. soil occurrence and defining more properly the least probable areas. The RBF-based ANN also demonstrated promising results for the characterization of different soil properties in the most probable a.s. soil areas at catchment scale. Since a.s. soil areas constitute highly productive lands for agricultural purpose, the combination of a probability map with more specific soil property predictive maps offers a valuable toolset to more precisely target strategic areas for subsequent environmental risk management. Notably, the use of laser scanning (i.e. Light Detection And Ranging, LiDAR) data enabled a more precise definition of a.s. soil probability areas, as well as the soil property modeling classes for sulfur content and the critical sulfide depth. Given suitable training/validation points, ANNs can be trained to yield a more precise modeling of the occurrence of a.s. soils and their properties. By contrast, fuzzy logic represents a simple, fast and objective alternative to carry out preliminary surveys, at catchment or regional scale, in areas offering a limited amount of data. This method enables delimiting and prioritizing the most probable areas for a.s soil occurrence, which can be particularly useful in the field. Being easily transferable from area to area, fuzzy logic modeling can be carried out at regional scale. Mapping at this scale would be extremely time-consuming through manual assessment. The use of spatial modeling techniques enables the creation of valid and comparable maps, which represents an important development within the a.s. soil mapping process. The a.s. soil mapping was also assessed using water chemistry data for 24 different catchments along the Finnish coast (in all, covering c. 21,300 km2) which were mapped with different methods (i.e. conventional mapping, fuzzy logic and an artificial neural network). Two a.s. soil related indicators measured in the river water (sulfate content and sulfate/chloride ratio) were compared to the extent of the most probable areas for a.s. soils in the surveyed catchments. High sulfate contents and sulfate/chloride ratios measured in most of the rivers demonstrated the presence of a.s. soils in the corresponding catchments. The calculated extent of the most probable a.s. soil areas is supported by independent data on water chemistry, suggesting that the a.s. soil probability maps created with different methods are reliable and comparable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wood-based bioprocesses present one of the fields of interest with the most potential in the circular economy. Expanding the use of wood raw material in sustainable industrial processes is acknowledged on both a global and a regional scale. This thesis concerns the application of a capillary zone electrophoresis (CZE) method with the aim of monitoring wood-based bioprocesses. The range of detectable carbohydrate compounds is expanded to furfural and polydatin in aquatic matrices. The experimental portion has been conducted on a laboratory scale with samples imitating process samples. This thesis presents a novel strategy for the uncertainty evaluation via in-house validation. The focus of the work is on the uncertainty factors of the CZE method. The CZE equipment is sensitive to ambient conditions. Therefore, a proper validation is essential for robust application. This thesis introduces a tool for process monitoring of modern bioprocesses. As a result, it is concluded that the applied CZE method provides additional results to the analysed samples and that the profiling approach is suitable for detecting changes in process samples. The CZE method shows significant potential in process monitoring because of the capability of simultaneously detecting carbohydrate-related compound clusters. The clusters can be used as summary terms, indicating process variation and drift.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study is to gain a better understanding of the structure and the deformation history of a NW-SE trending regional, crustal-scale shear structure in the Åland archipelago, SW Finland, called the Sottunga-Jurmo shear zone (SJSZ). Approaches involving e.g. structural geology, geochronology, geochemistry and metamorphic petrology were utilised in order to reconstruct the overall deformation history of the study area. The study therefore describes several features of the shear zone including structures, kinematics and lithologies within the study area, the ages of the different deformation phases (ductile to brittle) within the shear zone, as well as some geothermobarometric results. The results indicate that the SJSZ outlines a major crustal discontinuity between the extensively migmatized rocks NE of the shear zone and the unmigmatised, amphibolite facies rocks SW of the zone. The main SJSZ shows overall dextral lateral kinematics with a SW-side up vertical component and deformation partitioning into pure shear and simple shear dominated deformation styles that was intensified toward later stages of the deformation history. The deformation partitioning resulted in complex folding and refolding against the SW margin of the SJSZ, including conical and sheath folds, and in a formation of several minor strike-slip shear zones both parallel and conjugate to the main SJSZ in order to accommodate the regional transpressive stresses. Different deformation phases within the study area were dated by SIMS (zircon U-Pb), ID-TIMS (titanite U-Pb) and 40Ar/39Ar (pseudotachylyte wholerock) methods. The first deformation phase within the ca. 1.88 Ga rocks of the study area is dated at ca. 1.85 Ga, and the shear zone was reactivated twice within the ductile regime (at ca. 1.83 Ga and 1.79 Ga), during which the strain was successively increasingly partitioned into the main SJSZ and the minor shear zones. The age determinations suggest that the orogenic processes within the study area did not occur in a temporal continuum; instead, the metamorphic zircon rims and titanites show distinct, 10-20 Ma long breaks in deformation between phases of active deformation. The results of this study further imply slow cooling of the rocks through 600-700ºC so that at 1.79 Ga, 2 the temperature was still at least 600ºC. The highest recorded metamorphic pressures are 6.4-7.1 kbar. At the late stages or soon after the last ductile phase (ca. 1.79 Ga), relatively high-T mylonites and ultramylonites were formed, witnessing extreme deformation partitioning and high strain rates. After the rocks reached lower amphibolite facies to amphibolite-greenschist facies transitional conditions (ca. 500-550ºC), they cooled rapidly, probably due to crustal uplift and exhumation. The shear zone was reactivated at least once within the semi-brittle to brittle regime between ca. 1.79 Ga and 1.58 Ga, as evidenced by cataclasites and pseudotachylytes. In summary, the results of this study suggest that the Sottunga-Jurmo shear zone (and the South Finland shear zone) defines a major crustal discontinuity, and played a central role in accommodating the regional stresses during and after the Svecofennian orogeny.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selective papers of the workshop on "Development of models and forest soil surveys for monitoring of soil carbon", Koli, Finland, April 5-9 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is a preliminary study targeting South-Eastern Finland. The objective was to find out the financial and functional readiness and willingness of the small and medium-sized enterprises of the region to manufacture and sell distributed bioenergy solutions collaboratively as a business network. In this case these solutions mean small-scale (0.5 - 3 MW) woodchips-operated combined heat and power (CHP) plants. South-Eastern Finland has suffered from a decline in the recent years, mostly due to the problems of the traditionally strong industrial know-how area of the region, the paper industry. Local small and medium-sized companies will have to find new ways to survive the toughening competition. A group of 40 companies from suitable industries were selected and financial and comparative analysis was performed on them. Additionally 19 managing directors of the companies were selected for an interview to find out their views on networking, its requirements, advantages and the general interest in it. The studied companies were found to be generally in fairly good financial condition and in that sense, fit for networking activities. The interviews revealed that the companies were capable of producing all the needed elements for the plants in question, and the managers appeared to be very interested in and have a positive attitude towards such business networks. Thus it can be said that the small and medium-sized companies of the region are capable of and interested in manufacturing small bio-CHP plants as a production network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study is to gain a better understanding of the structure and the deformation history of a NW-SE trending regional, crustal-scale shear structure in the Åland archipelago, SW Finland, called the Sottunga-Jurmo shear zone (SJSZ). Approaches involving e.g. structural geology, geochronology, geochemistry and metamorphic petrology were utilised in order to reconstruct the overall deformation history of the study area. The study therefore describes several features of the shear zone including structures, kinematics and lithologies within the study area, the ages of the different deformation phases (ductile to brittle) within the shear zone, as well as some geothermobarometric results. The results indicate that the SJSZ outlines a major crustal discontinuity between the extensively migmatized rocks NE of the shear zone and the unmigmatised, amphibolite facies rocks SW of the zone. The main SJSZ shows overall dextral lateral kinematics with a SW-side up vertical component and deformation partitioning into pure shear and simple shear dominated deformation styles that was intensified toward later stages of the deformation history. The deformation partitioning resulted in complex folding and refolding against the SW margin of the SJSZ, including conical and sheath folds, and in a formation of several minor strike-slip shear zones both parallel and conjugate to the main SJSZ in order to accommodate the regional transpressive stresses. Different deformation phases within the study area were dated by SIMS (zircon U-Pb), ID-TIMS (titanite U-Pb) and 40Ar/39Ar (pseudotachylyte wholerock) methods. The first deformation phase within the ca. 1.88 Ga rocks of the study area is dated at ca. 1.85 Ga, and the shear zone was reactivated twice within the ductile regime (at ca. 1.83 Ga and 1.79 Ga), during which the strain was successively increasingly partitioned into the main SJSZ and the minor shear zones. The age determinations suggest that the orogenic processes within the study area did not occur in a temporal continuum; instead, the metamorphic zircon rims and titanites show distinct, 10-20 Ma long breaks in deformation between phases of active deformation. The results of this study further imply slow cooling of the rocks through 600-700ºC so that at 1.79 Ga, 2 the temperature was still at least 600ºC. The highest recorded metamorphic pressures are 6.4-7.1 kbar. At the late stages or soon after the last ductile phase (ca. 1.79 Ga), relatively high-T mylonites and ultramylonites were formed, witnessing extreme deformation partitioning and high strain rates. After the rocks reached lower amphibolite facies to amphibolite-greenschist facies transitional conditions (ca. 500-550ºC), they cooled rapidly, probably due to crustal uplift and exhumation. The shear zone was reactivated at least once within the semi-brittle to brittle regime between ca. 1.79 Ga and 1.58 Ga, as evidenced by cataclasites and pseudotachylytes. In summary, the results of this study suggest that the Sottunga-Jurmo shear zone (and the South Finland shear zone) defines a major crustal discontinuity, and played a central role in accommodating the regional stresses during and after the Svecofennian orogeny.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The greatest threat that the biodegradable waste causes on the environment is the methane produced in landfills by the decomposition of this waste. The Landfill Directive (1999/31/EC) aims to reduce the landfilling of biodegradable waste. In Finland, 31% of biodegradable municipal waste ended up into landfills in 2012. The pressure of reducing disposing into landfills is greatly increased by the forthcoming landfill ban on biodegradable waste in Finland. There is a need to discuss the need for increasing the utilization of biodegradable waste in regional renewable energy production to utilize the waste in a way that allows the best possibilities to reduce GHG emissions. The objectives of the thesis are: (1) to find important factors affecting renewable energy recovery possibilities from biodegradable waste, (2) to determine the main factors affecting the GHG balance of biogas production system and how to improve it and (3) to find ways to define energy performance of biogas production systems and what affects it. According to the thesis, the most important factors affecting the regional renewable energy possibilities from biodegradable waste are: the amount of available feedstock, properties of feedstock, selected utilization technologies, demand of energy and material products and the economic situation of utilizing the feedstocks. The biogas production by anaerobic digestion was seen as the main technology for utilizing biodegradable waste in agriculturally dense areas. The main reason for this is that manure was seen as the main feedstock, and it can be best utilized with anaerobic digestion, which can produce renewable energy while maintaining the spreading of nutrients on arable land. Biogas plants should be located close to the heat demand that would be enough to receive the produced heat also in the summer months and located close to the agricultural area where the digestate could be utilized. Another option for biogas use is to upgrade it to biomethane, which would require a location close to the natural gas grid. The most attractive masses for biogas production are municipal and industrial biodegradable waste because of gate fees the plant receives from them can provide over 80% of the income. On the other hand, directing gate fee masses for small-scale biogas plants could make dispersed biogas production more economical. In addition, the combustion of dry agricultural waste such as straw would provide a greater energy amount than utilizing them by anaerobic digestion. The complete energy performance assessment of biogas production system requires the use of more than one system boundary. These can then be used in calculating output–input ratios of biogas production, biogas plant, biogas utilization and biogas production system, which can be used to analyze different parts of the biogas production chain. At the moment, it is difficult to compare different biogas plants since there is a wide variation of definitions for energy performance of biogas production. A more consistent way of analyzing energy performance would allow comparing biogas plants with each other and other recovery systems and finding possible locations for further improvement. Both from the GHG emission balance and energy performance point of view, the energy consumption at the biogas plant was the most significant factor. Renewable energy use to fulfil the parasitic energy demand at the plant would be the most efficient way to reduce the GHG emissions at the plant. The GHG emission reductions could be increased by upgrading biogas to biomethane and displacing natural gas or petrol use in cars when compared to biogas CHP production. The emission reductions from displacing mineral fertilizers with digestate were seen less significant, and the greater N2O emissions from spreading digestate might surpass the emission reductions from displacing mineral fertilizers.