8 resultados para reconfigurable logic
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The purpose of the work was to realize a high-speed digital data transfer system for RPC muon chambers in the CMS experiment on CERN’s new LHC accelerator. This large scale system took many years and many stages of prototyping to develop, and required the participation of tens of people. The system interfaces to Frontend Boards (FEB) at the 200,000-channel detector and to the trigger and readout electronics in the control room of the experiment. The distance between these two is about 80 metres and the speed required for the optic links was pushing the limits of available technology when the project was started. Here, as in many other aspects of the design, it was assumed that the features of readily available commercial components would develop in the course of the design work, just as they did. By choosing a high speed it was possible to multiplex the data from some the chambers into the same fibres to reduce the number of links needed. Further reduction was achieved by employing zero suppression and data compression, and a total of only 660 optical links were needed. Another requirement, which conflicted somewhat with choosing the components a late as possible was that the design needed to be radiation tolerant to an ionizing dose of 100 Gy and to a have a moderate tolerance to Single Event Effects (SEEs). This required some radiation test campaigns, and eventually led to ASICs being chosen for some of the critical parts. The system was made to be as reconfigurable as possible. The reconfiguration needs to be done from a distance as the electronics is not accessible except for some short and rare service breaks once the accelerator starts running. Therefore reconfigurable logic is extensively used, and the firmware development for the FPGAs constituted a sizable part of the work. Some special techniques needed to be used there too, to achieve the required radiation tolerance. The system has been demonstrated to work in several laboratory and beam tests, and now we are waiting to see it in action when the LHC will start running in the autumn 2008.
Resumo:
Tutkimuksen tavoitteena oli selvittää ohjelmistotoimialan avaintekijöitä, jotka vaikuttavat yrityksen ansaintalogiikkaan sekä lisätä tietoisuutta ansaintalogiikan muodostumisesta pienissä ja keskisuurissa ohjelmistoyrityksissä. Tutkimuksen teoreettisessa osassa keskityttiin tarkastelemaan ansaintalogiikan, strategian ja liiketoimintamallin käsitteiden suhteita sekä arvioitiin toimialan osatekijöiden, hinnoitteluperiaatteiden ja ansaintamallien vaikutusta ansainnan muodostumiseen ohjelmistotoimialalla. Ohjelmistotuote ja - palveluliiketoimintaa koskien oli merkityksellistä tutkia tuotteistamisasteen ja arvoketjujen vaikutusta ansaintalogiikan muodostumisessa sekä esitellä erilaisia, tyypillisiä ohjelmistotoimialalla käytettäviä hinnoittelumenetelmiä. Työn empiirisessä osassa tarkasteltiin 23 suomalaisen ohjelmistoalan yrityksen ansaintalogiikkaa. Tiedot kerättiin haastatteluin ja analysoitiin laadullisen tutkimuksen keinoin. Tutkimustulokset korostivat ansaintalogiikan 'epämääräisyyttä' terminä mutta osoittivat, että ydinliiketoimintaan keskittyminen, tuote-, palvelu-, tai projektiliiketoiminnan osaaminen, tuotteistusaste ja kanavavalinnat ovat avaintekijöitä ansaintalogiikanmuodostumisessa. Ansaintalogiikan muodostamiseen liittyy paljon yrityksen sisäisiä ja ulkoisia haasteita sekä muutospaineita, eikä ohjelmistotoimialalla ole todennettavissa yhtä yleismaailmallista, menestyksen takaavaa ansaintalogiikkaa.
Resumo:
Fuzzy set theory and Fuzzy logic is studied from a mathematical point of view. The main goal is to investigatecommon mathematical structures in various fuzzy logical inference systems and to establish a general mathematical basis for fuzzy logic when considered as multi-valued logic. The study is composed of six distinct publications. The first paper deals with Mattila'sLPC+Ch Calculus. THis fuzzy inference system is an attempt to introduce linguistic objects to mathematical logic without defining these objects mathematically.LPC+Ch Calculus is analyzed from algebraic point of view and it is demonstratedthat suitable factorization of the set of well formed formulae (in fact, Lindenbaum algebra) leads to a structure called ET-algebra and introduced in the beginning of the paper. On its basis, all the theorems presented by Mattila and many others can be proved in a simple way which is demonstrated in the Lemmas 1 and 2and Propositions 1-3. The conclusion critically discusses some other issues of LPC+Ch Calculus, specially that no formal semantics for it is given.In the second paper the characterization of solvability of the relational equation RoX=T, where R, X, T are fuzzy relations, X the unknown one, and o the minimum-induced composition by Sanchez, is extended to compositions induced by more general products in the general value lattice. Moreover, the procedure also applies to systemsof equations. In the third publication common features in various fuzzy logicalsystems are investigated. It turns out that adjoint couples and residuated lattices are very often present, though not always explicitly expressed. Some minor new results are also proved.The fourth study concerns Novak's paper, in which Novak introduced first-order fuzzy logic and proved, among other things, the semantico-syntactical completeness of this logic. He also demonstrated that the algebra of his logic is a generalized residuated lattice. In proving that the examination of Novak's logic can be reduced to the examination of locally finite MV-algebras.In the fifth paper a multi-valued sentential logic with values of truth in an injective MV-algebra is introduced and the axiomatizability of this logic is proved. The paper developes some ideas of Goguen and generalizes the results of Pavelka on the unit interval. Our proof for the completeness is purely algebraic. A corollary of the Completeness Theorem is that fuzzy logic on the unit interval is semantically complete if, and only if the algebra of the valuesof truth is a complete MV-algebra. The Compactness Theorem holds in our well-defined fuzzy sentential logic, while the Deduction Theorem and the Finiteness Theorem do not. Because of its generality and good-behaviour, MV-valued logic can be regarded as a mathematical basis of fuzzy reasoning. The last paper is a continuation of the fifth study. The semantics and syntax of fuzzy predicate logic with values of truth in ana injective MV-algerba are introduced, and a list of universally valid sentences is established. The system is proved to be semanticallycomplete. This proof is based on an idea utilizing some elementary properties of injective MV-algebras and MV-homomorphisms, and is purely algebraic.
Resumo:
This bachelor’s thesis is a part of the research project realized in the summer 2011 in Lappeenranta University of Technology. The goal of the project was to develop an automation concept for controlling the electrically excited synchronous motor. Thesis concentrates on the implementation of the automation concept into the ABB’s AC500 programmable logic enviroment. The automation program was developed as a state machine with the ABB’s PS501 Control Builder software. For controlling the automation program is developed a fieldbus control and with CodeSys Visualization Tool a local control with control panel. The fieldbus control is done to correspond the ABB drives communication profile and the local control is implemented with a function block which feeds right control words into the statemachine. A field current control of the synchronous motor is realized as a method presented in doctoral thesis of Olli Pyrhönen (Pyrhönen 1998). The Method combines stator flux and torque based openloop control and power factor based feedback control.
Resumo:
In this work, the feasibility of the floating-gate technology in analog computing platforms in a scaled down general-purpose CMOS technology is considered. When the technology is scaled down the performance of analog circuits tends to get worse because the process parameters are optimized for digital transistors and the scaling involves the reduction of supply voltages. Generally, the challenge in analog circuit design is that all salient design metrics such as power, area, bandwidth and accuracy are interrelated. Furthermore, poor flexibility, i.e. lack of reconfigurability, the reuse of IP etc., can be considered the most severe weakness of analog hardware. On this account, digital calibration schemes are often required for improved performance or yield enhancement, whereas high flexibility/reconfigurability can not be easily achieved. Here, it is discussed whether it is possible to work around these obstacles by using floating-gate transistors (FGTs), and analyze problems associated with the practical implementation. FGT technology is attractive because it is electrically programmable and also features a charge-based built-in non-volatile memory. Apart from being ideal for canceling the circuit non-idealities due to process variations, the FGTs can also be used as computational or adaptive elements in analog circuits. The nominal gate oxide thickness in the deep sub-micron (DSM) processes is too thin to support robust charge retention and consequently the FGT becomes leaky. In principle, non-leaky FGTs can be implemented in a scaled down process without any special masks by using “double”-oxide transistors intended for providing devices that operate with higher supply voltages than general purpose devices. However, in practice the technology scaling poses several challenges which are addressed in this thesis. To provide a sufficiently wide-ranging survey, six prototype chips with varying complexity were implemented in four different DSM process nodes and investigated from this perspective. The focus is on non-leaky FGTs, but the presented autozeroing floating-gate amplifier (AFGA) demonstrates that leaky FGTs may also find a use. The simplest test structures contain only a few transistors, whereas the most complex experimental chip is an implementation of a spiking neural network (SNN) which comprises thousands of active and passive devices. More precisely, it is a fully connected (256 FGT synapses) two-layer spiking neural network (SNN), where the adaptive properties of FGT are taken advantage of. A compact realization of Spike Timing Dependent Plasticity (STDP) within the SNN is one of the key contributions of this thesis. Finally, the considerations in this thesis extend beyond CMOS to emerging nanodevices. To this end, one promising emerging nanoscale circuit element - memristor - is reviewed and its applicability for analog processing is considered. Furthermore, it is discussed how the FGT technology can be used to prototype computation paradigms compatible with these emerging two-terminal nanoscale devices in a mature and widely available CMOS technology.