16 resultados para pseudo telepatia quantistica qubit computazione meccanica
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Abstract: The art of Alcibaides: Bertrand de Jouvenel's The Pseudo-Alcibiades as an apology of politicians
Resumo:
In this Thesis I discuss the exact dynamics of simple non-Markovian systems. I focus on fundamental questions at the core of non-Markovian theory and investigate the dynamics of quantum correlations under non-Markovian decoherence. In the first context I present the connection between two different non-Markovian approaches, and compare two distinct definitions of non-Markovianity. The general aim is to characterize in exemplary cases which part of the environment is responsible for the feedback of information typical of non- Markovian dynamics. I also show how such a feedback of information is not always described by certain types of master equations commonly used to tackle non-Markovian dynamics. In the second context I characterize the dynamics of two qubits in a common non-Markovian reservoir, and introduce a new dynamical effect in a wellknown model, i.e., two qubits under depolarizing channels. In the first model the exact solution of the dynamics is found, and the entanglement behavior is extensively studied. The non-Markovianity of the reservoir and reservoirmediated-interaction between the qubits cause non-trivial dynamical features. The dynamical interplay between different types of correlations is also investigated. In the second model the study of quantum and classical correlations demonstrates the existence of a new effect: the sudden transition between classical and quantum decoherence. This phenomenon involves the complete preservation of the initial quantum correlations for long intervals of time of the order of the relaxation time of the system.
Resumo:
Memristori on yksi elektroniikan peruskomponenteista vastuksen, kondensaattorin ja kelan lisäksi. Se on passiivinen komponentti, jonka teorian kehitti Leon Chua vuonna 1971. Kesti kuitenkin yli kolmekymmentä vuotta ennen kuin teoria pystyttiin yhdistämään kokeellisiin tuloksiin. Vuonna 2008 Hewlett Packard julkaisi artikkelin, jossa he väittivät valmistaneensa ensimmäisen toimivan memristorin. Memristori eli muistivastus on resistiivinen komponentti, jonka vastusarvoa pystytään muuttamaan. Nimens mukaisesti memristori kykenee myös säilyttämään vastusarvonsa ilman jatkuvaa virtaa ja jännitettä. Tyypillisesti memristorilla on vähintään kaksi vastusarvoa, joista kumpikin pystytään valitsemaan syöttämällä komponentille jännitettä tai virtaa. Tämän vuoksi memristoreita kutsutaankin usein resistiivisiksi kytkimiksi. Resistiivisiä kytkimiä tutkitaan nykyään paljon erityisesti niiden mahdollistaman muistiteknologian takia. Resistiivisistä kytkimistä rakennettua muistia kutsutaan ReRAM-muistiksi (lyhenne sanoista resistive random access memory). ReRAM-muisti on Flash-muistin tapaan haihtumaton muisti, jota voidaan sähköisesti ohjelmoida tai tyhjentää. Flash-muistia käytetään tällä hetkellä esimerkiksi muistitikuissa. ReRAM-muisti mahdollistaa kuitenkin nopeamman ja vähävirtaiseman toiminnan Flashiin verrattuna, joten se on tulevaisuudessa varteenotettava kilpailija markkinoilla. ReRAM-muisti mahdollistaa myös useammin bitin tallentamisen yhteen muistisoluun binäärisen (”0” tai ”1”) toiminnan sijaan. Tyypillisesti ReRAM-muistisolulla on kaksi rajoittavaa vastusarvoa, mutta näiden kahden tilan välille pystytään mahdollisesti ohjelmoimaan useampia tiloja. Muistisoluja voidaan kutsua analogisiksi, jos tilojen määrää ei ole rajoitettu. Analogisilla muistisoluilla olisi mahdollista rakentaa tehokkaasti esimerkiksi neuroverkkoja. Neuroverkoilla pyritään mallintamaan aivojen toimintaa ja suorittamaan tehtäviä, jotka ovat tyypillisesti vaikeita perinteisille tietokoneohjelmille. Neuroverkkoja käytetään esimerkiksi puheentunnistuksessa tai tekoälytoteutuksissa. Tässä diplomityössä tarkastellaan Ta2O5 -perustuvan ReRAM-muistisolun analogista toimintaa pitäen mielessä soveltuvuus neuroverkkoihin. ReRAM-muistisolun valmistus ja mittaustulokset käydään läpi. Muistisolun toiminta on harvoin täysin analogista, koska kahden rajoittavan vastusarvon välillä on usein rajattu määrä tiloja. Tämän vuoksi toimintaa kutsutaan pseudoanalogiseksi. Mittaustulokset osoittavat, että yksittäinen ReRAM-muistisolu kykenee binääriseen toimintaan hyvin. Joiltain osin yksittäinen solu kykenee tallentamaan useampia tiloja, mutta vastusarvoissa on peräkkäisten ohjelmointisyklien välillä suurta vaihtelevuutta, joka hankaloittaa tulkintaa. Valmistettu ReRAM-muistisolu ei sellaisenaan kykene toimimaan pseudoanalogisena muistina, vaan se vaati rinnalleen virtaa rajoittavan komponentin. Myös valmistusprosessin kehittäminen vähentäisi yksittäisen solun toiminnassa esiintyvää varianssia, jolloin sen toiminta muistuttaisi enemmän pseudoanalogista muistia.
Resumo:
The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.
Resumo:
Micronization techniques based on supercritical fluids (SCFs) are promising for the production of particles with controlled size and distribution. The interest of the pharmaceutical field in the development of SCF techniques is increasing due to the need for clean processes, reduced consumption of energy, and to their several possible applications. The food field is still far from the application of SCF micronization techniques, but there is increasing interest mainly for the processing of products with high added value. The aim of this study is to use SCF micronization techniques for the production of particles of pharmaceuticals and food ingredients with controlled particle size and morphology, and to look at their production on semi-industrial scale. The results obtained are also used to understand the processes from the perspective of broader application within the pharmaceutical and food industries. Certain pharmaceuticals, a biopolymer and a food ingredient have been tested using supercritical antisolvent micronization (SAS) or supercritical assisted atomization (SAA) techniques. The reproducibility of the SAS technique has been studied using physically different apparatuses and on both laboratory and semi-industrial scale. Moreover, a comparison between semi-continuous and batch mode has been performed. The behaviour of the system during the SAS process has been observed using a windowed precipitation vessel. The micronized powders have been characterized by particle size and distribution, morphology and crystallinity. Several analyses have been performed to verify if the SCF process modified the structure of the compound or caused degradation or contamination of the product. The different powder morphologies obtained have been linked to the position of the process operating point with respect to the vapour-liquid equilibrium (VLE) of the systems studied, that is, mainly to the position of the mixture critical point (MCP) of the mixture. Spherical micro, submicro- and nanoparticles, expanded microparticles (balloons) and crystals were obtained by SAS. The obtained particles were amorphous or with different degrees of crystallinity and, in some cases, had different pseudo-polymorphic or polymorphic forms. A compound that could not be processed using SAS was micronized by SAA, and amorphous particles were obtained, stable in vials at room temperature. The SCF micronization techniques studied proved to be effective and versatile for the production of particles for several uses. Furthermore, the findings of this study and the acquired knowledge of the proposed processes can allow a more conscious application of SCF techniques to obtain products with the desired characteristics and enable the use of their principles for broader applications.
Resumo:
This thesis studies the properties and usability of operators called t-norms, t-conorms, uninorms, as well as many valued implications and equivalences. Into these operators, weights and a generalized mean are embedded for aggregation, and they are used for comparison tasks and for this reason they are referred to as comparison measures. The thesis illustrates how these operators can be weighted with a differential evolution and aggregated with a generalized mean, and the kinds of measures of comparison that can be achieved from this procedure. New operators suitable for comparison measures are suggested. These operators are combination measures based on the use of t-norms and t-conorms, the generalized 3_-uninorm and pseudo equivalence measures based on S-type implications. The empirical part of this thesis demonstrates how these new comparison measures work in the field of classification, for example, in the classification of medical data. The second application area is from the field of sports medicine and it represents an expert system for defining an athlete's aerobic and anaerobic thresholds. The core of this thesis offers definitions for comparison measures and illustrates that there is no actual difference in the results achieved in comparison tasks, by the use of comparison measures based on distance, versus comparison measures based on many valued logical structures. The approach has been highly practical in this thesis and all usage of the measures has been validated mainly by practical testing. In general, many different types of operators suitable for comparison tasks have been presented in fuzzy logic literature and there has been little or no experimental work with these operators.
Resumo:
Kulttuuriset ja tekstuaaliset tekijät alluusioiden kääntämisessä ja tulkinnassa. Alluusiot Dorothy L. Sayersin 1940- ja 1980-luvuilla suomennetuissa salapoliisiromaaneissa Väitöskirja käsittelee alluusioiden kääntämistä ja tulkintaa. Alluusio on intertekstuaalinen viittaus, jonka tulkitsemiseen tarvitaan implisiittistä tietoa tutuksi oletetusta viittauskohteesta. Käännösongelma alluusiosta tulee, mikäli kohdekulttuurin lukijat eivät tunne viittauskohdetta eivätkä voi päätellä alluusion merkitystä. Tutkimus pyrkii kuitenkin uuden analyysimenetelmän avulla osoittamaan, että vieraat alluusiot eivät välttämättä johda tulkintaongelmiin. Väitöskirja jakautuu kahteen osaan: analyysimenetelmän kehittämiseen (luvut 1-5) sekä tapaustutkimukseen (luvut 6-7). Kehitetyn menetelmän avulla pystytään analysoimaan aikaisempaa tarkemmin, millaisia tulkintamahdollisuuksia alluusiot tarjoavat eri lukijakunnille ja miten lähdetekstin alluusioiden kulttuuriset ja tekstuaaliset piirteet korreloivat käännösstrategioiden kanssa. Tapaustutkimus selvittää, millaisia tulkintamahdollisuuksia Dorothy L. Sayersin 1940- ja 1980-luvuilla suomennettujen salapoliisiromaanien alluusiot tarjosivat aikansa suomalaisille lukijoille. Tavoitteena on myös hahmottaa, miten suomentajien käännösratkaisut ja alluusioiden tulkintamahdollisuudet liittyvät toisaalta lähdetekstin alluusioiden piirteisiin ja toisaalta kohdekulttuurin kontekstiin. Tapaustutkimus tarjoaa näin uutta tietoa suomennoskirjallisuuden ja salapoliisiromaanien historiasta. Analyysimenetelmä määrittelee aikaisempaa alluusioita ja intertekstuaalisuutta käsitelleen tutkimuksen pohjalta ne kulttuuriset ja tekstuaaliset piirteet, jotka vaikuttavat alluusioiden kääntämiseen ja tulkintaan. Kulttuurisessa mielessä alluusio voi olla tietylle lukijakunnalle tuttu tai tuntematon. Tekstuaalisia tekijöitä ovat alluusion muodon ja tyylin tunnusmerkillisyys sekä alluusion pintamerkityksen koherenttius uudessa tekstikontekstissa, ilman tietoa viittauskohteesta. Alluusioiden tulkinnassa on perinteisesti erotettu toisaalta allusiivinen tulkintamahdollisuus, jossa alluusio on lukijoille tuttu ja yhdistettävissä viittauskohteeseensa, toisaalta kulttuuritöyssy, jonka muodostaa lukijoille tuntematon ja pintamerkitykseltään inkoherentti alluusio. Tutkimuksessa määritellään kulttuuristen ja tekstuaalisten tekijöiden perusteella lisäksi kaksi muuta mahdollisuutta. Pseudo-allusiivisessa tulkinnassa tuntematon alluusio erottuu ympäröivästä tekstikontekstista tyyliltään ja on koherentti ainakin kuvaannollisessa mielessä ilman viittauskohdettaan. Ei-allusiivisessa tulkinnassa taas vieras alluusio sulautuu kontekstiin sekä muodoltaan että merkitykseltään niin, ettei lukija edes huomaa mahdollista alluusiota. Tulkintamahdollisuuksien jakauma antaa yleiskuvan siitä, miten tietty lukijakunta pystyi tulkitsemaan tekstin alluusioita. Lisäksi analyysi tarkastelee lähdetekstin ja käännöksen välillä tulkintamahdollisuuksissa tapahtuneita muutoksia sekä niiden vaikutusta tulkinnan vaatimaan vaivannäköön (effort) ja alluusion funktioihin. Tapaustutkimus perehtyy Sayers-suomennosten kulttuurikonteksteihin tarkastelemalla salapoliisiromaanien asemaa suomalaisessa kirjallisuusjärjestelmässä, suomennoksilta odotettuja piirteitä sekä suomentajien ammattikuvaa, taustoja ja työoloja. Tulosten perusteella alluusioiden kääntäminen oli vaativa tehtävä sekä 1940- että 1980-luvun suomentajille. Lähdetekstien alluusioista 60–70 prosenttia oli todennäköisesti kohdelukijoille vieraita. Molempina aikakausina suomennoksilta odotettiin silti sekä kielellistä sujuvuutta että lähdetekstin merkitysten välittämistä. 1940-luvun suomentajien tehtävää vaikeutti lisäksi mm. se, että suomentaminen oli enimmäkseen sivutoimista ja englanti oli harvoin parhaiten hallittu vieras kieli. Nämä olosuhteet lienevät vaikuttaneet etenkin vähäarvoisena pidetyn salapoliisikirjallisuuden suomennoksiin. 1980-luvulla suomentajien aikataulut olivat realistisempia, englannin taidot parempia ja päätoiminen suomentaminen mahdollista. Myös salapoliisiromaanien arvostus oli lisääntynyt. Sekä 1940- että 1980-luvun suomennoksissa kohdelukijoille vieraitakin alluusioita oli usein säilytetty, mikäli ne olivat koherentteja ilman viittauskohdettaan. Sen sijaan vieraita ja pintamerkitykseltään epäselviä alluusioita oli muokattu tai poistettu. Kuitenkin 1980-luvun suomentajat säilyttivät lähdetekstin alluusioita useammin ja tarkemmin kuin 1940-luvun suomentajat. Varsinkin poisjättämistä esiintyi 1940-luvun suomennoksissa enemmän. Alluusioiden tulkintamahdollisuudet olivat kaikissa käännöksissä muuttuneet sikäli, että melko harvat suomennetut alluusiot olivat enää kohdelukijoiden tunnistettavissa. Toisaalta myös kulttuuritöyssyt olivat harvinaisia. Erot 1940- ja 1980-luvun suomennosten välillä näkyivätkin pseudo-allusiivisissa ja ei-allusiivisissa tulkintamahdollisuuksissa. 1980-luvun suomennoksissa vieraat alluusiot oli johdonmukaisesti säilytetty niin, että käännetyt alluusiot voitiin tulkita pseudo-alluusioiksi. Sen sijaan 1940-luvun suomennoksissa vieraita alluusioita oli usein muokattu tai jätetty pois tavalla, joka johti ei-allusiiviseen tulkintaan. Kohdelukijoiden kannalta 1980-luvun suomennettujen alluusioiden tulkitseminen lienee vaatinut jonkin verran enemmän vaivaa. Toisaalta pseudo-allusiivisten käännösten pohjalta oli useimmiten mahdollista rakentaa koherentti tulkinta, ja monesti ne jopa välittivät samankaltaisia funktioita kuin lähdetekstin alluusiot. 1940-luvun suomennosten muokkaukset ja poistot periaatteessa helpottivat tulkintaa, mutta mahdollisia kulttuuritöyssyjä esiintyi edelleen, jopa kääntäjän tekemien muutosten seurauksena. 1940-luvun suomennoksissa myös käännettyjen alluusioiden funktiot olivat muuttuneet enemmän lähdetekstin alluusioihin nähden. Kaiken kaikkiaan 1980-luvun suomennokset olivat lähempänä oman aikansa hyvän käännöksen piirteitä. Toisaalta alluusioiden muokkaaminen sai 1940-luvun suomennokset muistuttamaan enemmän perinteistä arvoituksen ratkaisuun keskittyvää salapoliisiromaania, joten tältä osin ne lienevät vastanneet kohdelukijoiden odotuksia. Kulttuurikontekstin vaikutus siis näkyi sekä käännösstrategioissa että käännettyjen alluusioiden tulkintamahdollisuuksissa. Tutkimustuloksissa korostui kuitenkin myös se, että lähdetekstin alluusion pintamerkitys saattaa vaikuttaa käännösratkaisuihin. Lisäksi käännetyt pseudo-alluusiot saattavat välittää samankaltaisia funktioita kuin lähdetekstin alluusiot. Toisin kuin yleensä on esitetty, kohdelukijoille vieraiden alluusioiden säilyttäminen saattaakin siis olla toimiva ratkaisu.
Resumo:
The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.
Resumo:
The present study examines the repertory of liturgical chant known as St. Petersburg Court Chant which emerged within the Imperial Court of St. Petersburg, Russia, and appeared in print in a number of revisions during the course of the 19th century, eventually to spread throughout the Russian Empire and even abroad. The study seeks answers to questions on the essence and composition of Court Chant, its history and liturgical background, and most importantly, its musical relationship to other repertories of Eastern Slavic chant. The research questions emerge from previous literary accounts of Court Chant (summarized in the Introduction), which have tended to be inaccurate and generally not based on critical research. The study is divided into eight main chapters. Chapter 1 provides a survey of the history of Eastern Slavic chant and the Imperial Court Chapel of St. Petersburg until 1917, with special emphasis on the history of singing traditional chant in polyphony, the status of the Court Chapel as a government authority, and its endeavours in publishing church music. Chapter 2 deals with the liturgical background of Eastern chant, the chant genres, and main repertories of Eastern Slavic chant. Chapter 3 concentrates on chant sources: it introduces the musical notations utilised, after which a typology of chant books is presented. The discussion continues with a survey of the sources of Court Chant and their content, the specimens selected for closer analysis, the comparative materials from other repertories, and ends with a commentary on some chant sources that have been excluded. The comparative sources include a specimen from around the beginning of the 12th century, a few manuscripts from the 17th century, and printed and manuscript chant books from the early 18th to early 20th century, covering the geographical area that delimits to the western Ukraine, Astrakhan, Nizhny Novgorod, and the Solovetsky Monastery. Chapter 4 presents the approach and methods used in the subsequent analytical comparisons. After a survey of the pitch organization of Eastern Slavic chant, the customary harmonization strategy of traditional chant polyphony is examined, according to which a method for meaningful analysis of the harmony is proposed. The method is based on the observation that the harmonic framework of chant polyphony derives from the standard pitch collection of monodic chant known as the Church Gamut, specific pitches of which form eight harmonic regions that behave like the usual tonalities of major and harmonic minor. Because of the considerable quantity of comparative chant forms, computer-assisted statistical methods are applied to the analysis of chant melodies. The primary chant forms and their respective comparative forms have been pre-processed into reduced chant prototypes and divided into redactions. The analyses are carried out by measuring the formal dissimilarities of the primary chant forms of the Court Chant repertory against each comparative form, and also by measuring the reciprocal dissimilarities of all chant versions in a redaction, the results of which are subjected to agglomerative hierarchical clustering in order to find out how the chant forms relate to each other. The dissimilarities are determined by applying a metric dissimilarity function that is based on the Levenshtein Distance. Chapter 5 provides the melodic and harmonic analyses of generic chants (chants used for multiple texts of different lengths), i.e., chants for stichera samoglasny and troparia, Chapter 6 of pseudo-generic chants (chants that are used for multiple texts but with certain restrictions), i.e., chants for heirmoi, prokeimena, and three other hymns, and Chapter 7 of non-generic chants, covering nine chants that in the Court repertory are not shared by multiple texts. The results are summarized and evaluated in Chapter 8. Accordingly, it can be established that, contrary to previous conceptions, melodically, Court Chant is in effect a full part of the wider Eastern Slavic chant tradition. Even if it is somewhat detached from the chant versions of the Synodal square-note chant books and the local tradition of Moscow, it is particularly close to chant forms of East Ukraine and some vernacular repertories from Russia. Respectively, the harmonization strategies of Court Chant do not show significant individuality in comparison with those of the available polyphonic comparative sources, the main difference being the part-writing, which generally conforms to western common practice standard, whereas the deviations from this tend to be more significant in other analysed repertories of polyphonic chant. Thus, insofar as the subsequent prevalence of Court Chant is not based on its forceful dissemination by authorities (as suggested in previous literature but for which little tangible evidence could be found in Chapter 1), in the present author’s interpretation, Court Chant attained its dominance principally because musically it was considered sufficiently traditional, and as a chant body supported by the government, was conveniently available in print in serviceable harmonizations.
Resumo:
C-Jun N-terminal kinase (JNK) is traditionally recognized as a crucial factor in stress response and inducer of apoptosis upon various stimulations. Three isoforms build the JNK subfamily of MAPK; generally expressed JNK1 and JNK2 and brain specific JNK3. Degenerative potency placed JNK in the spotlight as potential pharmacological option for intervention. Unfortunately, adverse effects of potential drugs and observation that expression of only JNK2 and JNK3 are induced upon stress, restrained initial enthusiasm. Notably, JNK1 demonstrated atypical high constitutive activity in neurons that is not responsive to cellular stresses and indicated existence of physiological activity. This thesis aimed at revealing the physiological functions of JNK1 in actin homeostasis through novel effector MARCKS-Like 1 (MARCKSL1) protein, neuronal trafficking mediated by major kinesin-1 motor protein and microtubule (MT) dynamics via STMN2/SCG10. The screen for novel physiological JNK substrates revealed specific phosphorylation of C-terminal end of MARCKSL1 at S120, T148 and T183 both ex vivo and in vitro. By utilizing site-specific mutagenesis, various actin dynamics and migrations assays we were able to demonstrate that JNK1 phosphorylation specifically facilitates F-actin bundling and thus filament stabilisation. Consecutively, this molecular mechanism was proved to enhance formation of filopodia; cell surface projections that allow cell sensing surrounding environment and migrate efficiently. Our results visualize JNK dependent and MARCKSL1 executed induction of filopodia in neurons and fibroblast indicating general mechanism. Subsequently, inactivation of JNK action on MARCKSL1 shifts cellular actin machinery into lamellipodial dynamic arrangement. Tuning of actin cytoskeleton inevitably melds with cell migration. We observed that both active JNK and JNK pseudo-phosphorylated form of MARCKSL1 reduce actin turnover in intact cells leading to overall diminished cell motility. We demonstrate that tumour transformed cells from breast, prostate, lung and muscle-derived cancers upregulate MARCKSL1. We showed on the example of prostate cancer PC-3 cell line that JNK phosphorylation negatively controls MARCKSL1 ability to induce migration, which precedes cancer cell metastasis. The second round of identification of JNK physiological substrates resulted in detection of predominant motor protein kinesin-1 (Kif5). Mass spectrometry detailed analysis showed evident endogenous phosphorylation of kinesin-1 on S176 within motor domain that interacts with MT. In vitro phosphorylation of bacterially expressed kinesin heavy chain by JNK isoforms displayed higher specificity of JNK1 when compared to JNK3. Since, JNK1 is constitutively active in neurons it signified physiological aspect of kinesin-1 regulation. Subsequent biochemical examination revealed that kinesin-1, when not phosphorylated on JNK site, exhibits much higher affinity toward MTs. Expression of the JNK non-phosphorable kinesin-1 mutant in intact cells as well as in vitro single molecule imaging using total internal reflection fluorescence microscopy indicated that the mutant loses normal speed and is not able to move processively into proper cellular compartments. We identify novel kinesin-1 cargo protein STMN2/SCG10, which along with known kinesin-1 cargo BDNF is showing impaired trafficking when JNK activity is inhibited. Our data postulates that constitutive JNK activity in neurons is crucial for unperturbed physiologically relevant transport of kinesin-1 dependant cargo. Additionally, my work helps to validate another novel physiological JNK1 effector STMN2/SCG10 as determinant of axodendritic neurites dynamics in the developing brain through regulation of MT turnover. We show successively that this increased MT dynamics is crucial during developmental radial migration when brain layering occurs. Successively, we are able to show that introduction of JNK phosphorylation mimicking STMN2/SCG10 S62/73D mutant rescues completely JNK1 genetic deletion migration phenotype. We prove that STMN2/SCG10 is predominant JNK effector responsible for MT depolymerising activity and neurite length during brain development. Summarizing, this work describes identification of three novel JNK substrates MARCKSL1, kinesin-1 and STMN2/SCG10 and investigation of their roles in cytoskeleton dynamics and cargo transport. This data is of high importance to understand physiological meaning of JNK activity, which might have an adverse effect during pharmaceutical intervention aiming at blocking pathological JNK action.
Resumo:
This Thesis discusses the phenomenology of the dynamics of open quantum systems marked by non-Markovian memory effects. Non-Markovian open quantum systems are the focal point of a flurry of recent research aiming to answer, e.g., the following questions: What is the characteristic trait of non-Markovian dynamical processes that discriminates it from forgetful Markovian dynamics? What is the microscopic origin of memory in quantum dynamics, and how can it be controlled? Does the existence of memory effects open new avenues and enable accomplishments that cannot be achieved with Markovian processes? These questions are addressed in the publications forming the core of this Thesis with case studies of both prototypical and more exotic models of open quantum systems. In the first part of the Thesis several ways of characterizing and quantifying non-Markovian phenomena are introduced. Their differences are then explored using a driven, dissipative qubit model. The second part of the Thesis focuses on the dynamics of a purely dephasing qubit model, which is used to unveil the origin of non-Markovianity for a wide class of dynamical models. The emergence of memory is shown to be strongly intertwined with the structure of the spectral density function, as further demonstrated in a physical realization of the dephasing model using ultracold quantum gases. Finally, as an application of memory effects, it is shown that non- Markovian dynamical processes facilitate a novel phenomenon of timeinvariant discord, where the total quantum correlations of a system are frozen to their initial value. Non-Markovianity can also be exploited in the detection of phase transitions using quantum information probes, as shown using the physically interesting models of the Ising chain in a transverse field and a Coulomb chain undergoing a structural phase transition.
Resumo:
After introducing the no-cloning theorem and the most common forms of approximate quantum cloning, universal quantum cloning is considered in detail. The connections it has with universal NOT-gate, quantum cryptography and state estimation are presented and briefly discussed. The state estimation connection is used to show that the amount of extractable classical information and total Bloch vector length are conserved in universal quantum cloning. The 1 2 qubit cloner is also shown to obey a complementarity relation between local and nonlocal information. These are interpreted to be a consequence of the conservation of total information in cloning. Finally, the performance of the 1 M cloning network discovered by Bužek, Hillery and Knight is studied in the presence of decoherence using the Barenco et al. approach where random phase fluctuations are attached to 2-qubit gates. The expression for average fidelity is calculated for three cases and it is found to depend on the optimal fidelity and the average of the phase fluctuations in a specific way. It is conjectured to be the form of the average fidelity in the general case. While the cloning network is found to be rather robust, it is nevertheless argued that the scalability of the quantum network implementation is poor by studying the effect of decoherence during the preparation of the initial state of the cloning machine in the 1 ! 2 case and observing that the loss in average fidelity can be large. This affirms the result by Maruyama and Knight, who reached the same conclusion in a slightly different manner.
Resumo:
Initially identified as stress activated protein kinases (SAPKs), the c-Jun Nterminal kinases (JNKs) are currently accepted as potent regulators of various physiologically important cellular events. Named after their competence to phosphorylate transcription factor c-Jun in response to UVtreatment, JNKs play a key role in cell proliferation, cell death or cell migration. Interestingly, these functions are crucial for proper brain formation. The family consists of three JNK isoforms, JNK1, JNK2 and JNK3. Unlike brain specific JNK3 isoform, JNK1 and JNK2 are ubiquitously expressed. It is estimated that ten splice variants exist. However, the detailed cellular functions of these remain undetermined. In addition, physiological conditions keep the activities of JNK2 and JNK3 low in comparison with JNK1, whereas cellular stress raises the activity of these isoforms dramatically. Importantly, JNK1 activity is constitutively high in neurons, yet it does not stimulate cell death. This suggests a valuable role for JNK1 in brain development, but also as an important mediator of cell wellbeing. The aim of this thesis was to characterize the functional relationship between JNK1 and SCG10. We found that SCG10 is a bona fide target for JNK. By employing differential centrifugation we showed that SCG10 co-localized with active JNK, MKK7 and JIP1 in a fraction containing endosomes and Golgi vesicles. Investigation of JNK knockout tissues using phosphospecific antibodies recognizing JNK-specific phosphorylation sites on SCG10 (Ser 62/Ser 73) showed that phosphorylation of endogenous SCG10 was dramatically decreased in Jnk1-/- brains. Moreover, we found that JNK and SCG10 co-express during early embryonic days in brain regions that undergo extensive neuronal migration. Our study revealed that selective inhibition of JNK in the cytoplasm significantly increased both the frequency of exit from the multipolar stage and radial migration rate. However, as a consequence, it led to ill-defined cellular organization. Furthermore, we found that multipolar exit and radial migration in Jnk1 deficient mice can be connected to changes in phosphorylation state of SCG10. Also, the expression of a pseudo-phosphorylated mutant form of SCG10, mimicking the JNK1- phopshorylated form, brings migration rate back to normal in Jnk1 knockout mouse embryos. Furthermore, we investigated the role of SCG10 and JNK in regulation of Golgi apparatus (GA) biogenesis and whether pathological JNK action could be discernible by its deregulation. We found that SCG10 maintains GA integrity as with the absence of SCG10 neurons present more compact fragmented GA structure, as shown by the knockdown approach. Interestingly, neurons isolated from Jnk1-/- mice show similar characteristics. Block of ER to GA is believed to be involved in development of Parkinson's disease. Hence, by using a pharmacological approach (Brefeldin A treatment), we showed that GA recovery is delayed upon removal of the drug in Jnk1-/- neurons to an extent similar to the shRNA SCG10-treated cells. Finally, we investigated the role of the JNK1-SCG10 duo in the maintenance of GA biogenesis following excitotoxic insult. Although the GA underwent fragmentation in response to NMDA treatment, we observed a substantial delay in GA disintegration in neurons lacking either JNK1 or SCG10.
Resumo:
JNK1 is a MAP-kinase that has proven a significant player in the central nervous system. It regulates brain development and the maintenance of dendrites and axons. Several novel phosphorylation targets of JNK1 were identified in a screen performed in the Coffey lab. These proteins were mainly involved in the regulation of neuronal cytoskeleton, influencing the dynamics and stability of microtubules and actin. These structural proteins form the dynamic backbone for the elaborate architecture of the dendritic tree of a neuron. The initiation and branching of the dendrites requires a dynamic interplay between the cytoskeletal building blocks. Both microtubules and actin are decorated by associated proteins which regulate their dynamics. The dendrite-specific, high molecular weight microtubule associated protein 2 (MAP2) is an abundant protein in the brain, the binding of which stabilizes microtubules and influences their bundling. Its expression in non-neuronal cells induces the formation of neurite-like processes from the cell body, and its function is highly regulated by phosphorylation. JNK1 was shown to phosphorylate the proline-rich domain of MAP2 in vivo in a previous study performed in the group. Here we verify three threonine residues (T1619, T1622 and T1625) as JNK1 targets, the phosphorylation of which increases the binding of MAP2 to microtubules. This binding stabilizes the microtubules and increases process formation in non-neuronal cells. Phosphorylation-site mutants were engineered in the lab. The non-phosphorylatable mutant of MAP2 (MAP2- T1619A, T1622A, T1625A) in these residues fails to bind microtubules, while the pseudo-phosphorylated form, MAP2- T1619D, T1622D, Thr1625D, efficiently binds and induces process formation even without the presence of active JNK1. Ectopic expression of the MAP2- T1619D, T1622D, Thr1625D in vivo in mouse brain led to a striking increase in the branching of cortical layer 2/3 (L2/3) pyramidal neurons, compared to MAP2-WT. The dendritic complexity defines the receptive field of a neuron and dictates the output to the postsynaptic cells. Previous studies in the group indicated altered dendrite architecture of the pyramidal neurons in the Jnk1-/- mouse motor cortex. Here, we used Lucifer Yellow loading and Sholl analysis of neurons in order to study the dendritic branching in more detail. We report a striking, opposing effect in the absence of Jnk1 in the cortical layers 2/3 and 5 of the primary motor cortex. The basal dendrites of pyramidal neurons close to the pial surface at L2/3 show a reduced complexity. In contrast, the L5 neurons, which receive massive input from the L2/3 neurons, show greatly increased branching. Another novel substrate identified for JNK1 was MARCKSL1, a protein that regulates actin dynamics. It is highly expressed in neurons, but also in various cancer tissues. Three phosphorylation target residues for JNK1 were identified, and it was demonstrated that their phosphorylation reduces actin turnover and retards migration of these cells. Actin is the main cytoskeletal component in dendritic spines, the site of most excitatory synapses in pyramidal neurons. The density and gross morphology of the Lucifer Yellow filled dendrites were characterized and we show reduced density and altered morphology of spines in the motor cortex and in the hippocampal area CA3. The dynamic dendritic spines are widely considered to function as the cellular correlate during learning. We used a Morris water maze to test spatial memory. Here, the wild-type mice outperformed the knock-out mice during the acquisition phase of the experiment indicating impaired special memory. The L5 pyramidal neurons of the motor cortex project to the spinal cord and regulate the movement of distinct muscle groups. Thus the altered dendrite morphology in the motor cortex was expected to have an effect on the input-output balance in the signaling from the cortex to the lower motor circuits. A battery of behavioral tests were conducted for the wild-type and Jnk1-/- mice, and the knock-outs performed poorly compared to wild-type mice in tests assessing balance and fine motor movements. This study expands our knowledge of JNK1 as an important regulator of the dendritic fields of neurons and their manifestations in behavior.
Resumo:
The objectives of this work were synthesizing an EDTA-β-CD adsorbent and investigating its adsorption potential and applications in preconcentration of REEs from aqueous phase. The adsorption capacity of EDTA-β-CD was investigated. The adsorption studies were performed by batch techniques both in one- and multi-component systems. The effects of pH, contact time and initial concentration were evaluated. The analytical detection methods and characterization methods were presented. EDTA-β-CD adsorbent was synthesized successfully with high EDTA coverage. The maximum REEs uptake was 0.310 mmol g-1 for La(III), 0.337 mmol g-1 for Ce(III) and 0.353 mmol g-1 for Eu(III), respectively. The kinetics of REEs onto EDTA-β-CD fitted well to pseudo-second-order model and the adsorption rate was affected by intra-particle diffusion. The experimental data of one component studies fitted to Langmuir isotherm model indicating the homogeneous surface of the adsorbent. The extended Sips model was applicable for the isotherm studies in three-component system. The electrostatic interaction, chelation and complexation were all involved in the adsorption mechanism. The preconcentration of RE ions and regeneration of EDTA-β-CD were successful. Overall, EDTA-β-CD is an effective adsorbent in adsorption and preconcentration of REEs.