2 resultados para protein delivery

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Post-testicular sperm maturation occurs in the epididymis. The ion concentration and proteins secreted into the epididymal lumen, together with testicular factors, are believed to be responsible for the maturation of spermatozoa. Disruption of the maturation of spermatozoa in the epididymis provides a promising strategy for generating a male contraceptive. However, little is known about the proteins involved. For drug development, it is also essential to have tools to study the function of these proteins in vitro. One approach for screening novel targets is to study the secretory products of the epididymis or the G protein-coupled receptors (GPCRs) that are involved in the maturation process of the spermatozoa. The modified Ca2+ imaging technique to monitor release from PC12 pheochromocytoma cells can also be applied to monitor secretory products involved in the maturational processes of spermatozoa. PC12 pheochromocytoma cells were chosen for evaluation of this technique as they release catecholamines from their cell body, thus behaving like endocrine secretory cells. The results of the study demonstrate that depolarisation of nerve growth factor -differentiated PC12 cells releases factors which activate nearby randomly distributed HEL erythroleukemia cells. Thus, during the release process, the ligands reach concentrations high enough to activate receptors even in cells some distance from the release site. This suggests that communication between randomly dispersed cells is possible even if the actual quantities of transmitter released are extremely small. The development of a novel method to analyse GPCR-dependent Ca2+ signalling in living slices of mouse caput epididymis is an additional tool for screening for drug targets. By this technique it was possible to analyse functional GPCRs in the epithelial cells of the ductus epididymis. The results revealed that, both P2X- and P2Y-type purinergic receptors are responsible for the rapid and transient Ca2+ signal detected in the epithelial cells of caput epididymides. Immunohistochemical and reverse transcriptase-polymerase chain reaction (RTPCR) analyses showed the expression of at least P2X1, P2X2, P2X4 and P2X7, and P2Y1 and P2Y2 receptors in the epididymis. Searching for epididymis-specific promoters for transgene delivery into the epididymis is of key importance for the development of specific models for drug development. We used EGFP as the reporter gene to identify proper promoters to deliver transgenes into the epithelial cells of the mouse epididymis in vivo. Our results revealed that the 5.0 kb murine Glutathione peroxidase 5 (GPX5) promoter can be used to target transgene expression into the epididymis while the 3.8 kb Cysteine-rich secretory protein-1 (CRISP-1) promoter can be used to target transgene expression into the testis. Although the visualisation of EGFP in living cells in culture usually poses few problems, the detection of EGFP in tissue sections can be more difficult because soluble EGFP molecules can be lost if the cell membrane is damaged by freezing, sectioning, or permeabilisation. Furthermore, the fluorescence of EGFP is dependent on its conformation. Therefore, fixation protocols that immobilise EGFP may also destroy its usefulness as a fluorescent reporter. We therefore developed a novel tissue preparation and preservation techniques for EGFP. In addition, fluorescence spectrophotometry with epididymal epithelial cells in suspension revealed the expression of functional purinergic, adrenergic, cholinergic and bradykinin receptors in these cell lines (mE-Cap27 and mE-Cap28). In conclusion, we developed new tools for studying the role of the epididymis in sperm maturation. We developed a new technique to analyse GPCR dependent Ca2+ signalling in living slices of mouse caput epididymis. In addition, we improved the method of detecting reporter gene expression. Furthermore, we characterised two epididymis-specific gene promoters, analysed the expression of GPCRs in epididymal epithelial cells and developed a novel technique for measurement of secretion from cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipid movement in cells occurs by a variety of methods. Lipids diffuse freely along the lateral plane of a membrane and can translocate between the lipid leaflets, either spontaneously or with the help of enzymes. Lipid translocation between the different cellular compartments predominantly takes place through vesicular transport. Specialized lipid transport proteins (LTPs) have also emerged as important players in lipid movement, as well as other cellular processes. In this thesis we have studied the glycolipid transport protein (GLTP), a protein that transports glycosphingolipids (GSLs). While the in vitro properties of GLTP have been well characterized, its cell biological role remains elusive. By altering GSL and GLTP levels in cells, we have extracted clues towards the protein's function. Based on the results presented in this thesis and in previous works, we hypothesize that GLTP is involved in the GSL homeostasis in cells. GLTP most likely functions as a transporter or sensor of newly synthesized glucosylceramide (GlcCer), at or near the site of GlcCer synthesis. GLTP also seems to be involved in the synthesis of globotriacylceramide, perhaps in a manner that is similar to that of the fourphosphate adaptor protein 2, another GlcCer-transporting LTP. Additionally, we have developed and studied a novel method of introducing ceramides to cells, using a solvent-free approach. Ceramides are important lipids that are implicated in several cellular functions. Their role as proapoptotic molecules is particularly evident. Ceramides form stable bilayer structures when complexed with cholesterol phosphocholine (CholPC), a large-headgroup sterol. By adding ceramide/CholPC complexes to the growth medium, various chain length ceramides were successfully delivered to cells in culture. The uptake rate was dependent on the chain length of the ceramide, where shorter lipids were internalized more quickly. The rate of uptake also determined how the cells metabolised the ceramides. Faster uptake favored conversion of ceramide to GlcCer, whereas slower delivery resulted mainly in breakdown of the lipid.