6 resultados para proper fraction
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The development of load-bearing osseous implant with desired mechanical and surface properties in order to promote incorporation with bone and to eliminate risk of bone resorption and implant failure is a very challenging task. Bone formation and resoption processes depend on the mechanical environment. Certain stress/strain conditions are required to promote new bone growth and to prevent bone mass loss. Conventional metallic implants with high stiffness carry most of the load and the surrounding bone becomes virtually unloaded and inactive. Fibre-reinforced composites offer an interesting alternative to metallic implants, because their mechanical properties can be tailored to be equal to those of bone, by the careful selection of matrix polymer, type of fibres, fibre volume fraction, orientation and length. Successful load transfer at bone-implant interface requires proper fixation between the bone and implant. One promising method to promote fixation is to prepare implants with porous surface. Bone ingrowth into porous surface structure stabilises the system and improves clinical success of the implant. The experimental part of this work was focused on polymethyl methacrylate (PMMA) -based composites with dense load-bearing core and porous surface. Three-dimensionally randomly orientated chopped glass fibres were used to reinforce the composite. A method to fabricate those composites was developed by a solvent treatment technique and some characterisations concerning the functionality of the surface structure were made in vitro and in vivo. Scanning electron microscope observations revealed that the pore size and interconnective porous architecture of the surface layer of the fibre-reinforced composite (FRC) could be optimal for bone ingrowth. Microhardness measurements showed that the solvent treatment did not have an effect on the mechanical properties of the load-bearing core. A push-out test, using dental stone as a bone model material, revealed that short glass fibre-reinforced porous surface layer is strong enough to carry load. Unreacted monomers can cause the chemical necrosis of the tissue, but the levels of leachable resisidual monomers were considerably lower than those found in chemically cured fibre-reinforced dentures and in modified acrylic bone cements. Animal experiments proved that surface porous FRC implant can enhance fixation between bone and FRC. New bone ingrowth into the pores was detected and strong interlocking between bone and the implant was achieved.
Resumo:
This thesis presents an approach for formulating and validating a space averaged drag model for coarse mesh simulations of gas-solid flows in fluidized beds using the two-fluid model. Proper modeling for fluid dynamics is central in understanding any industrial multiphase flow. The gas-solid flows in fluidized beds are heterogeneous and usually simulated with the Eulerian description of phases. Such a description requires the usage of fine meshes and small time steps for the proper prediction of its hydrodynamics. Such constraint on the mesh and time step size results in a large number of control volumes and long computational times which are unaffordable for simulations of large scale fluidized beds. If proper closure models are not included, coarse mesh simulations for fluidized beds do not give reasonable results. The coarse mesh simulation fails to resolve the mesoscale structures and results in uniform solids concentration profiles. For a circulating fluidized bed riser, such predicted profiles result in a higher drag force between the gas and solid phase and also overestimated solids mass flux at the outlet. Thus, there is a need to formulate the closure correlations which can accurately predict the hydrodynamics using coarse meshes. This thesis uses the space averaging modeling approach in the formulation of closure models for coarse mesh simulations of the gas-solid flow in fluidized beds using Geldart group B particles. In the analysis of formulating the closure correlation for space averaged drag model, the main parameters for the modeling were found to be the averaging size, solid volume fraction, and distance from the wall. The closure model for the gas-solid drag force was formulated and validated for coarse mesh simulations of the riser, which showed the verification of this modeling approach. Coarse mesh simulations using the corrected drag model resulted in lowered values of solids mass flux. Such an approach is a promising tool in the formulation of appropriate closure models which can be used in coarse mesh simulations of large scale fluidized beds.
Resumo:
The aim of this study was to investigate the diagnosis delay and its impact on the stage of disease. The study also evaluated a nuclear DNA content, immunohistochemical expression of Ki-67 and bcl-2, and the correlation of these biological features with the clinicopathological features and patient outcome. 200 Libyan women, diagnosed during 2008–2009 were interviewed about the period from the first symptoms to the final histological diagnosis of breast cancer. Also retrospective preclinical and clinical data were collected from medical records on a form (questionnaire) in association with the interview. Tumor material of the patients was collected and nuclear DNA content analysed using DNA image cytometry. The expression of Ki-67 and bcl-2 were assessed using immunohistochemistry (IHC). The studies described in this thesis show that the median of diagnosis time for women with breast cancer was 7.5 months and 56% of patients were diagnosed within a period longer than 6 months. Inappropriate reassurance that the lump was benign was an important reason for prolongation of the diagnosis time. Diagnosis delay was also associated with initial breast symptom(s) that did not include a lump, old age, illiteracy, and history of benign fibrocystic disease. The patients who showed diagnosis delay had bigger tumour size (p<0.0001), positive lymph nodes (p<0.0001), and high incidence of late clinical stages (p<0.0001). Biologically, 82.7% of tumors were aneuploid and 17.3% were diploid. The median SPF of tumors was 11% while the median positivity of Ki-67 was 27.5%. High Ki-67 expression was found in 76% of patients, and high SPF values in 56% of patients. Positive bcl-2 expression was found in 62.4% of tumors. 72.2% of the bcl-2 positive samples were ER-positive. Patients who had tumor with DNA aneuploidy, high proliferative activity and negative bcl-2 expression were associated with a high grade of malignancy and short survival. The SPF value is useful cell proliferation marker in assessing prognosis, and the decision cut point of 11% for SPF in the Libyan material was clearly significant (p<0.0001). Bcl-2 is a powerful prognosticator and an independent predictor of breast cancer outcome in the Libyan material (p<0.0001). Libyan breast cancer was investigated in these studies from two different aspects: health services and biology. The results show that diagnosis delay is a very serious problem in Libya and is associated with complex interactions between many factors leading to advanced stages, and potentially to high mortality. Cytometric DNA variables, proliferative markers (Ki-67 and SPF), and oncoprotein bcl-2 negativity reflect the aggressive behavior of Libyan breast cancer and could be used with traditional factors to predict the outcome of individual patients, and to select appropriate therapy.
Resumo:
Initially identified as stress activated protein kinases (SAPKs), the c-Jun Nterminal kinases (JNKs) are currently accepted as potent regulators of various physiologically important cellular events. Named after their competence to phosphorylate transcription factor c-Jun in response to UVtreatment, JNKs play a key role in cell proliferation, cell death or cell migration. Interestingly, these functions are crucial for proper brain formation. The family consists of three JNK isoforms, JNK1, JNK2 and JNK3. Unlike brain specific JNK3 isoform, JNK1 and JNK2 are ubiquitously expressed. It is estimated that ten splice variants exist. However, the detailed cellular functions of these remain undetermined. In addition, physiological conditions keep the activities of JNK2 and JNK3 low in comparison with JNK1, whereas cellular stress raises the activity of these isoforms dramatically. Importantly, JNK1 activity is constitutively high in neurons, yet it does not stimulate cell death. This suggests a valuable role for JNK1 in brain development, but also as an important mediator of cell wellbeing. The aim of this thesis was to characterize the functional relationship between JNK1 and SCG10. We found that SCG10 is a bona fide target for JNK. By employing differential centrifugation we showed that SCG10 co-localized with active JNK, MKK7 and JIP1 in a fraction containing endosomes and Golgi vesicles. Investigation of JNK knockout tissues using phosphospecific antibodies recognizing JNK-specific phosphorylation sites on SCG10 (Ser 62/Ser 73) showed that phosphorylation of endogenous SCG10 was dramatically decreased in Jnk1-/- brains. Moreover, we found that JNK and SCG10 co-express during early embryonic days in brain regions that undergo extensive neuronal migration. Our study revealed that selective inhibition of JNK in the cytoplasm significantly increased both the frequency of exit from the multipolar stage and radial migration rate. However, as a consequence, it led to ill-defined cellular organization. Furthermore, we found that multipolar exit and radial migration in Jnk1 deficient mice can be connected to changes in phosphorylation state of SCG10. Also, the expression of a pseudo-phosphorylated mutant form of SCG10, mimicking the JNK1- phopshorylated form, brings migration rate back to normal in Jnk1 knockout mouse embryos. Furthermore, we investigated the role of SCG10 and JNK in regulation of Golgi apparatus (GA) biogenesis and whether pathological JNK action could be discernible by its deregulation. We found that SCG10 maintains GA integrity as with the absence of SCG10 neurons present more compact fragmented GA structure, as shown by the knockdown approach. Interestingly, neurons isolated from Jnk1-/- mice show similar characteristics. Block of ER to GA is believed to be involved in development of Parkinson's disease. Hence, by using a pharmacological approach (Brefeldin A treatment), we showed that GA recovery is delayed upon removal of the drug in Jnk1-/- neurons to an extent similar to the shRNA SCG10-treated cells. Finally, we investigated the role of the JNK1-SCG10 duo in the maintenance of GA biogenesis following excitotoxic insult. Although the GA underwent fragmentation in response to NMDA treatment, we observed a substantial delay in GA disintegration in neurons lacking either JNK1 or SCG10.
Resumo:
The distribution and traits of fish are of interest both ecologically and socio-economically. In this thesis, phenotypic and structural variation in fish populations and assemblages was studied on multiple spatial and temporal scales in shallow coastal areas in the archipelago of the northern Baltic Proper. In Lumparn basin in Åland Islands, the fish assemblage displayed significant seasonal variation in depth zone distribution. The results indicate that investigating both spatial and temporal variation in small scale is crucial for understanding patterns in fish distribution and community structure in large scale. The local population of Eurasian perch Perca fluviatilis L displayed habitat-specific morphological and dietary variation. Perch in the pelagic zone were on average deeper in their body shape than the littoral ones and fed on fish and benthic invertebrates. The results differ from previous studies conducted in freshwater habitats, where the pelagic perch typically are streamlined in body shape and zooplanktivorous. Stable isotopes of carbon and nitrogen differed between perch with different stomach contents, suggesting differentiation of individual diet preferences. In the study areas Lumparn and Ivarskärsfjärden in Åland Islands and Galtfjärden in Swedish east coast, the development in fish assemblages during the 2000’s indicated a general shift towards higher abundances of small-bodied lower-order consumers, especially cyprinids. For European pikeperch Sander lucioperca L., recent declines in adult fish abundances and high mortalities (Z = 1.06–1.16) were observed, which suggests unsustainably high fishing pressure on pikeperch. Based on the results it can be hypothesized that fishing has reduced the abundances of large predatory fish, which together with bottom-up forcing by eutrophication has allowed the lower-order consumer species to increase in abundances. This thesis contributes to the scientific understanding of aquatic ecosystems with new descriptions on morphological and dietary adaptations in perch in brackish water, and on the seasonal variation in small-scale spatial fish distribution. The results also demonstrate anthropogenic effects on coastal fish communities and underline the urgency of further reducing nutrient inputs and regulating fisheries in the Baltic Sea region.