5 resultados para programação linear multiobjetivo 0-1
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The objective of the research was to study the influence of temperature, oxygen pressure, catalysts loading and initial COD concentration of debarking wastewater on the pollutants during the catalytic oxidation. More importantly, how the addition of catalyst affects the wet oxidation process. The whole work was divided into two main sections, theoretical and experimental parts. The theoretical part reviews the pulp and paper industry from wood processing to paper production as well as operations that generate wastes. Treatment methods applicable for industrial pulp and paper mill effluents were also discussed. Wet oxidation and catalytic wet oxidation processes including mechanism, reactions, kinetics and industrial applications were previewed. In the experimental part, catalytic wet oxidation process were studied at 120-180°C, 0-10 bar oxygen pressure, 0-1 g/L catalyst concentration and 1000-3000 mg/L initial COD concentration. Responses, such as Chemical oxygen demand (COD), Total organic carbon (TOC), colour, lignin/tannin, Biochemical oxygen demand (BOD) and pH were measured. In the experiment, the best conditions occurred at 180°C, 10 bar, l g/L catalyst concentration and 3000mg/L initial COD. At these conditions; 74% COD, 97% lignin/tannin, 54% TOC, 90% colour were removed from the wastewater. pH was greatly reduced from 7 to 4.6. Lignin/tannin was removed most. Lignin/tannin showed linear dependency with colour during oxidation. Temperature made the most impact in reducing contaminants in debarked wastewater.
Resumo:
The main objective of this thesis is to show that plate strips subjected to transverse line loads can be analysed by using the beam on elastic foundation (BEF) approach. It is shown that the elastic behaviour of both the centre line section of a semi infinite plate supported along two edges, and the free edge of a cantilever plate strip can be accurately predicted by calculations based on the two parameter BEF theory. The transverse bending stiffness of the plate strip forms the foundation. The foundation modulus is shown, mathematically and physically, to be the zero order term of the fourth order differential equation governing the behaviour of BEF, whereas the torsion rigidity of the plate acts like pre tension in the second order term. Direct equivalence is obtained for harmonic line loading by comparing the differential equations of Levy's method (a simply supported plate) with the BEF method. By equating the second and zero order terms of the semi infinite BEF model for each harmonic component, two parameters are obtained for a simply supported plate of width B: the characteristic length, 1/ λ, and the normalized sum, n, being the effect of axial loading and stiffening resulting from the torsion stiffness, nlin. This procedure gives the following result for the first mode when a uniaxial stress field was assumed (ν = 0): 1/λ = √2B/π and nlin = 1. For constant line loading, which is the superimposition of harmonic components, slightly differing foundation parameters are obtained when the maximum deflection and bending moment values of the theoretical plate, with v = 0, and BEF analysis solutions are equated: 1 /λ= 1.47B/π and nlin. = 0.59 for a simply supported plate; and 1/λ = 0.99B/π and nlin = 0.25 for a fixed plate. The BEF parameters of the plate strip with a free edge are determined based solely on finite element analysis (FEA) results: 1/λ = 1.29B/π and nlin. = 0.65, where B is the double width of the cantilever plate strip. The stress biaxial, v > 0, is shown not to affect the values of the BEF parameters significantly the result of the geometric nonlinearity caused by in plane, axial and biaxial loading is studied theoretically by comparing the differential equations of Levy's method with the BEF approach. The BEF model is generalised to take into account the elastic rotation stiffness of the longitudinal edges. Finally, formulae are presented that take into account the effect of Poisson's ratio, and geometric non linearity, on bending behaviour resulting from axial and transverse inplane loading. It is also shown that the BEF parameters of the semi infinite model are valid for linear elastic analysis of a plate strip of finite length. The BEF model was verified by applying it to the analysis of bending stresses caused by misalignments in a laboratory test panel. In summary, it can be concluded that the advantages of the BEF theory are that it is a simple tool, and that it is accurate enough for specific stress analysis of semi infinite and finite plate bending problems.
Resumo:
En option är ett finansiellt kontrakt som ger dess innehavare en rättighet (men medför ingen skyldighet) att sälja eller köpa någonting (till exempel en aktie) till eller från säljaren av optionen till ett visst pris vid en bestämd tidpunkt i framtiden. Den som säljer optionen binder sig till att gå med på denna framtida transaktion ifall optionsinnehavaren längre fram bestämmer sig för att inlösa optionen. Säljaren av optionen åtar sig alltså en risk av att den framtida transaktion som optionsinnehavaren kan tvinga honom att göra visar sig vara ofördelaktig för honom. Frågan om hur säljaren kan skydda sig mot denna risk leder till intressanta optimeringsproblem, där målet är att hitta en optimal skyddsstrategi under vissa givna villkor. Sådana optimeringsproblem har studerats mycket inom finansiell matematik. Avhandlingen "The knapsack problem approach in solving partial hedging problems of options" inför en ytterligare synpunkt till denna diskussion: I en relativt enkel (ändlig och komplett) marknadsmodell kan nämligen vissa partiella skyddsproblem beskrivas som så kallade kappsäcksproblem. De sistnämnda är välkända inom en gren av matematik som heter operationsanalys. I avhandlingen visas hur skyddsproblem som tidigare lösts på andra sätt kan alternativt lösas med hjälp av metoder som utvecklats för kappsäcksproblem. Förfarandet tillämpas även på helt nya skyddsproblem i samband med så kallade amerikanska optioner.
Resumo:
Poly-L-lactide (PLLA) is a widely used sustainable and biodegradable alternative to replace synthetic non-degradable plastic materials in the packaging industry. Conversely, its processing properties are not always optimal, e.g. insufficient melt strength at higher temperatures (necessary in extrusion coating processes). This thesis reports on research to improve properties of commercial PLLA grade (3051D from NatureWorks), to satisfy and extend end-use applications, such as food packaging by blending with modified PLLA. Adjustment of the processability by chain branching of commercial poly-L-lactide initiated by peroxide was evaluated. Several well-defined branched structures with four arms (sPLLA) were synthesized using pentaerythritol as a tetra-functional initiator. Finally, several block copolymers consisting of polyethylene glycol and PLLA (i.e. PEGLA) were produced to obtain a well extruded material with improved heat sealing properties. Reactive extrusion of poly-L-lactide was carried out in the presence of 0.1, 0.3 and 0.5 wt% of various peroxides [tert-butyl-peroxybenzoate (TBPB), 2,5-dimethyl-2,5-(tert-butylperoxy)-hexane (Lupersol 101; LOL1) and benzoyl peroxide (BPO)] at 190C. The peroxide-treated PLLAs showed increased complex viscosity and storage modulus at lower frequencies, indicating the formation of branched/cross linked architectures. The material property changes were dependent on the peroxide, and the used peroxide concentration. Gel fraction analysis showed that the peroxides, afforded different gel contents, and especially 0.5 wt% peroxide, produced both an extremely high molar mass, and a cross linked structure, not perhaps well suited for e.g. further use in a blending step. The thermal behavior was somewhat unexpected as the materials prepared with 0.5 wt% peroxide showed the highest ability for crystallization and cold crystallization, despite substantial cross linking. The peroxide-modified PLLA, i.e. PLLA melt extruded with 0.3 wt% of TBPB and LOL1 and 0.5 wt% BPO was added to linear PLLA in ratios of 5, 15 and 30 wt%. All blends showed increased zero shear viscosity, elastic nature (storage modulus) and shear sensitivity. All blends remained amorphous, though the ability of annealing was improved slightly. Extrusion coating on paperboard was conducted with PLLA, and peroxide-modified PLLA blends (90:10). All blends were processable, but only PLLA with 0.3 wt% of LOL1 afforded a smooth high quality surface with improved line speed. Adhesion levels between fiber and plastic, as well as heat seal performance were marginally reduced compared with pure 3051D. The water vapor transmission measurements (WVTR) of the blends containing LOL1 showed acceptable levels, only slightly lower than for comparable PLLA 3051D. A series of four-arm star-shaped poly-L-lactide (sPLLA) with different branch length was synthesized by ring opening polymerization (ROP) of L-lactide using pentaerythritol as initiator and stannous octoate as catalyst. The star-shaped polymers were further blended with its linear resin and studied for their melt flow and thermal properties. Blends containing 30 wt% of sPLLA with low molecular weight (30 wt%; Mwtotal: 2500 g mol-1 and 15000 g mol-1) showed lower zero shear viscosity and significantly increased shear thinning, while at the same time slightly increased crystallization of the blend. However, the amount of crystallization increased significantly with the higher molecular weight sPLLA, therefore the star-shaped structure may play a role as nucleating agent. PLLA-polyethylene glycol–PLLA triblock copolymers (PEGLA) with different PLLA block length were synthesized and their applicability as blends with linear PLLA (3051D NatureWorks) was investigated with the intention of improving heat-seal and adhesion properties of extrusion-coated paperboard. PLLA-PEG-PLLA was obtained by ring opening polymerization (ROP) of L-lactide using PEG (molecular weight 6000 g mol-1) as an initiator, and stannous octoate as catalyst. The structures of the PEGLAs were characterized by proton nuclear magnetic resonance spectroscopy (1H-NMR). The melt flow and thermal properties of all PEGLAs and their blends were evaluated using dynamic rheology, and differential scanning calorimeter (DSC). All blends containing 30 wt% of PEGLAs showed slightly higher zero shear viscosity, higher shear thinning and increased melt elasticity (based on tan delta). Nevertheless, no significant changes in thermal properties were distinguished. High molecular weight PEGLAs were used in extrusion coating line with 3051D without problems.