14 resultados para predictive analytics
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Perinteisesti ajoneuvojen markkinointikampanjoissa kohderyhmät muodostetaan yksinkertaisella kriteeristöllä koskien henkilön tai hänen ajoneuvonsa ominaisuuksia. Ennustavan analytiikan avulla voidaan tuottaa kohderyhmänmuodostukseen teknisesti kompleksisia mutta kuitenkin helppokäyttöisiä menetelmiä. Tässä työssä on sovellettu luokittelu- ja regressiomenetelmiä uuden auton ostajien joukkoon. Tämän työn menetelmiksi on rajattu tukivektorikone sekä Coxin regressiomalli. Coxin regression avulla on tutkittu elinaika-analyysien soveltuvuutta ostotapahtuman tapahtumahetken mallintamiseen. Luokittelu tukivektorikonetta käyttäen onnistuu tehtävässään noin 72% tapauksissa. Tukivektoriregressiolla mallinnetun hankintahetken virheen keskiarvo on noin neljä kuukautta. Työn tulosten perusteella myös elinaika-analyysin käyttö ostotapahtuman tapahtumahetken mallintamiseen on menetelmänä käyttökelpoinen.
Resumo:
Yritysten syvällinen ymmärrys työntekijöistä vaatii yrityksiltä monipuolista panostusta tiedonhallintaan. Tämän yhdistäminen ennakoivaan analytiikkaan ja tiedonlouhintaan mahdollistaa yrityksille uudenlaisen ulottuvuuden kehittää henkilöstöhallinnon toimintoja niin työntekijöiden kuin yrityksen etujen mukaisesti. Tutkielman tavoitteena oli selvittää tiedonlouhinnan hyödyntämistä henkilöstöhallinnossa. Tutkielma toteutettiin konstruktiivistä menetelmää hyödyntäen. Teoreettinen viitekehys keskittyi ennakoivan analytiikan ja tiedonlouhinnan konseptin ymmärtämiseen. Tutkielman empiriaosuus rakentui kvalitatiiviseen ja kvantitatiiviseen osiin. Kvalitatiivinen osa koostui tutkielman esitutkimuksesta, jossa käsiteltiin ennakoivan analytiikan ja tiedonlouhinnan hyödyntämistä. Kvantitatiivinen osa rakentui tiedonlouhintaprojektiin, joka toteutettiin henkilöstöhallintoon tutkien henkilöstövaihtuvuutta. Esitutkimuksen tuloksena tiedonlouhinnan hyödyntämisen haasteiksi ilmeni muun muassa tiedon omistajuus, osaaminen ja ymmärrys mahdollisuuksista. Tiedonlouhintaprojektin tuloksena voidaan todeta, että tutkimuksessa sovelletuista korrelaatioiden tutkimisista ja logistisesta regressioanalyysistä oli havaittavissa tilastollisia riippuvuuksia vapaaehtoisesti poistuvien työntekijöiden osalta.
Resumo:
Liiketoiminta-analytiikka on yksi yritysten suorituskyvyn johtamisen osa-alue, joka on viime aikoina noussut vahvasti esille yritysten kilpailuedun mahdollistavana avaintekijänä. Tämän tutkimuksen tavoitteena oli kartoittaa yritysten liiketoiminta-analytiikan nykytila ja tarpeet Suomessa. Tutkimus on luonteeltaan kvalitatiivinen vertaileva tutkimus. Tutkimuksen empiirinen aineisto kerättiin kahden menetelmän yhdistelmänä. Liiketoiminta-analytiikan hyödyntämisessä edistyneempien yrityksien asiantuntijoille toteutettiin haastattelut. Lisäksi toteutettiin sähköpostitse lomakemuotoinen kyselytutkimus, jotta saavutettaisiin kattavampi näkemys analytiikan markkinoista. Tutkimuksessa on kartoitettu, miten Suomessa ymmärretään liiketoiminta- analytiikan käsite eri yrityksien analytiikan asiantuntijoiden toimesta, sekä minkälaisissa päätöksentekotilanteissa liiketoiminta-analytiikkaa hyödynnetään ja minkälaisilla tavoilla. Lisäksi on selvitetty, miten liiketoiminta-analytiikan kehittämistä ja analytiikan kyvykkyyksiä hallitaan yrityksissä. Liiketoiminta-analytiikka on Suomessa tietyillä toimialoilla erittäin kehittynyttä, mutta yleisesti ollaan jäljessä alan edelläkävijöitä ja esimerkiksi Ruotsia. Liiketoiminta-analytiikan hyödyntäminen ja tarpeet ovat pitkälti kohdistuneet päätöksentekotilanteisiin, joissa yritys kohtaa asiakkaansa. Suurin yksittäinen este liiketoiminta-analytiikan hyödyntämiselle on resurssi- ja osaamisvaje.
Resumo:
Kilpailuetua tavoittelevan yrityksen pitää kyetä jalostamaan tietoa ja tunnistamaan sen avulla uusia tulevaisuuden mahdollisuuksia. Tulevaisuuden mielikuvien luomiseksi yrityksen on tunnettava toimintaympäristönsä ja olla herkkänä havaitsemaan muutostrendit ja muut toimintaympäristön signaalit. Ympäristön elintärkeät signaalit liittyvät kilpailijoihin, teknologian kehittymiseen, arvomaailman muutoksiin, globaaleihin väestötrendeihin tai jopa ympäristön muutoksiin. Spatiaaliset suhteet ovat peruspilareita käsitteellistää maailmaamme. Pitney (2015) on arvioinut, että 80 % kaikesta bisnesdatasta sisältää jollakin tavoin viittauksia paikkatietoon. Siitä huolimatta paikkatietoa on vielä huonosti hyödynnetty yritysten strategisten päätösten tukena. Teknologioiden kehittyminen, tiedon nopea siirto ja paikannustekniikoiden integroiminen eri laitteisiin ovat mahdollistaneet sen, että paikkatietoa hyödyntäviä palveluja ja ratkaisuja tullaan yhä enemmän näkemään yrityskentässä. Tutkimuksen tavoitteena oli selvittää voiko location intelligence toimia strategisen päätöksenteon tukena ja jos voi, niin miten. Työ toteutettiin konstruktiivista tutkimusmenetelmää käyttäen, jolla pyritään ratkaisemaan jokin relevantti ongelma. Konstruktiivinen tutkimus tehtiin tiiviissä yhteistyössä kolmen pk-yrityksen kanssa ja siihen haastateltiin kuutta eri strategiasta vastaavaa henkilöä. Tutkimuksen tuloksena löydettiin, että location intelligenceä voidaan hyödyntää strategisen päätöksenteon tukena usealla eri tasolla. Yksinkertaisimmassa karttaratkaisussa halutut tiedot tuodaan kartalle ja luodaan visuaalinen esitys, jonka avulla johtopäätöksien tekeminen helpottuu. Toisen tason karttaratkaisu pitää sisällään sekä sijainti- että ominaisuustietoa, jota on yhdistetty eri lähteistä. Tämä toisen tason karttaratkaisu on usein kuvailevaa analytiikkaa, joka mahdollistaa erilaisten ilmiöiden analysoinnin. Kolmannen eli ylimmän tason karttaratkaisu tarjoaa ennakoivaa analytiikkaa ja malleja tulevaisuudesta. Tällöin ohjelmaan koodataan älykkyyttä, jossa informaation keskinäisiä suhteita on määritelty joko tiedon louhintaa tai tilastollisia analyysejä hyödyntäen. Tutkimuksen johtopäätöksenä voidaan todeta, että location intelligence pystyy tarjoamaan lisäarvoa strategisen päätöksenteon tueksi, mikäli yritykselle on hyödyllistä ymmärtää eri ilmiöiden, asiakastarpeiden, kilpailijoiden ja markkinamuutoksien maantieteellisiä eroavaisuuksia. Parhaimmillaan location intelligence -ratkaisu tarjoaa luotettavan analyysin, jossa tieto välittyy muuttumattomana päätöksentekijältä toiselle ja johtopäätökseen johtaneita syitä on mahdollista palata tarkastelemaan tarvittaessa uudelleen.
Resumo:
Tissue-based biomarkers are studied to receive information about the pathologic processes and cancer outcome, and to enable development of patient-tailored treatments. The aim of this study was to investigate the potential prognostic and/or predictive value of selected biomarkers in colorectal cancer (CRC). Group IIA secretory phospholipase A2 (IIA PLA2) expression was assessed in 114 samples presenting different phases of human colorectal carcinogenesis. Securin, Ki-67, CD44 variant 6 (CD44v6), aldehyde dehydrogenase 1 (ALDH1) and β-catenin were studied in a material including 227 rectal carcinoma patients treated with short-course preoperative radiotherapy (RT), long-course preoperative (chemo)RT (CRT) or surgery only. Epidermal growth factor receptor (EGFR) gene copy number (GCN), its heterogeneity in CRC tissue, and association with response to EGFR-targeted antibodies cetuximab and panitumumab were analyzed in a cohort of 76 metastatic CRC. IIA PLA2 expression was decreased in invasive carcinomas compared to adenomas, but did not relate to patient survival. High securin expression after long-course (C)RT and high ALDH1 expression in node-negative rectal cancer were independent adverse prognostic factors, ALDH1 specifically in patients treated with adjuvant chemotherapy. The lack of membranous CD44v6 in the rectal cancer invasive front associated with infiltrative growth pattern and the risk of disease recurrence. Heterogeneous EGFR GCN increase predicted benefit from EGFR-targeted antibodies, also in the chemorefractory patient population. In summary, high securin and ALDH1 protein expression independently relate to poor outcome in subgroups of rectal cancer patients, potentially because of resistance to conventional chemotherapeutics. Heterogeneous increase in EGFR GCN was validated to be a promising predictive factor in the treatment of metastatic CRC.
Resumo:
Med prediktion avses att man skattar det framtida värdet på en observerbar storhet. Kännetecknande för det bayesianska paradigmet är att osäkerhet gällande okända storheter uttrycks i form av sannolikheter. En bayesiansk prediktiv modell är således en sannolikhetsfördelning över de möjliga värden som en observerbar, men ännu inte observerad storhet kan anta. I de artiklar som ingår i avhandlingen utvecklas metoder, vilka bl.a. tillämpas i analys av kromatografiska data i brottsutredningar. Med undantag för den första artikeln, bygger samtliga metoder på bayesiansk prediktiv modellering. I artiklarna betraktas i huvudsak tre olika typer av problem relaterade till kromatografiska data: kvantifiering, parvis matchning och klustring. I den första artikeln utvecklas en icke-parametrisk modell för mätfel av kromatografiska analyser av alkoholhalt i blodet. I den andra artikeln utvecklas en prediktiv inferensmetod för jämförelse av två stickprov. Metoden tillämpas i den tredje artik eln för jämförelse av oljeprover i syfte att kunna identifiera den förorenande källan i samband med oljeutsläpp. I den fjärde artikeln härleds en prediktiv modell för klustring av data av blandad diskret och kontinuerlig typ, vilken bl.a. tillämpas i klassificering av amfetaminprover med avseende på produktionsomgångar.
Resumo:
Companies require information in order to gain an improved understanding of their customers. Data concerning customers, their interests and behavior are collected through different loyalty programs. The amount of data stored in company data bases has increased exponentially over the years and become difficult to handle. This research area is the subject of much current interest, not only in academia but also in practice, as is shown by several magazines and blogs that are covering topics on how to get to know your customers, Big Data, information visualization, and data warehousing. In this Ph.D. thesis, the Self-Organizing Map and two extensions of it – the Weighted Self-Organizing Map (WSOM) and the Self-Organizing Time Map (SOTM) – are used as data mining methods for extracting information from large amounts of customer data. The thesis focuses on how data mining methods can be used to model and analyze customer data in order to gain an overview of the customer base, as well as, for analyzing niche-markets. The thesis uses real world customer data to create models for customer profiling. Evaluation of the built models is performed by CRM experts from the retailing industry. The experts considered the information gained with help of the models to be valuable and useful for decision making and for making strategic planning for the future.
Resumo:
The purpose of this paper is to examine the stability and predictive abilities of the beta coefficients of individual equities in the Finnish stock market. As beta is widely used in several areas of finance, including risk management, asset pricing and performance evaluation among others, it is important to understand its characteristics and find out whether its estimates can be trusted and utilized.
Resumo:
Wood-based bioprocesses present one of the fields of interest with the most potential in the circular economy. Expanding the use of wood raw material in sustainable industrial processes is acknowledged on both a global and a regional scale. This thesis concerns the application of a capillary zone electrophoresis (CZE) method with the aim of monitoring wood-based bioprocesses. The range of detectable carbohydrate compounds is expanded to furfural and polydatin in aquatic matrices. The experimental portion has been conducted on a laboratory scale with samples imitating process samples. This thesis presents a novel strategy for the uncertainty evaluation via in-house validation. The focus of the work is on the uncertainty factors of the CZE method. The CZE equipment is sensitive to ambient conditions. Therefore, a proper validation is essential for robust application. This thesis introduces a tool for process monitoring of modern bioprocesses. As a result, it is concluded that the applied CZE method provides additional results to the analysed samples and that the profiling approach is suitable for detecting changes in process samples. The CZE method shows significant potential in process monitoring because of the capability of simultaneously detecting carbohydrate-related compound clusters. The clusters can be used as summary terms, indicating process variation and drift.
Resumo:
Nykypäivän monimutkaisessa ja epävakaassa liiketoimintaympäristössä yritykset, jotka kykenevät muuttamaan tuottamansa operatiivisen datan tietovarastoiksi, voivat saavuttaa merkittävää kilpailuetua. Ennustavan analytiikan hyödyntäminen tulevien trendien ennakointiin mahdollistaa yritysten tunnistavan avaintekijöitä, joiden avulla he pystyvät erottumaan kilpailijoistaan. Ennustavan analytiikan hyödyntäminen osana päätöksentekoprosessia mahdollistaa ketterämmän, reaaliaikaisen päätöksenteon. Tämän diplomityön tarkoituksena on koota teoreettinen viitekehys analytiikan mallintamisesta liike-elämän loppukäyttäjän näkökulmasta ja hyödyntää tätä mallinnusprosessia diplomityön tapaustutkimuksen yritykseen. Teoreettista mallia hyödynnettiin asiakkuuksien mallintamisessa sekä tunnistamalla ennakoivia tekijöitä myynnin ennustamiseen. Työ suoritettiin suomalaiseen teollisten suodattimien tukkukauppaan, jolla on liiketoimintaa Suomessa, Venäjällä ja Balteissa. Tämä tutkimus on määrällinen tapaustutkimus, jossa tärkeimpänä tiedonkeruumenetelmänä käytettiin tapausyrityksen transaktiodataa. Data työhön saatiin yrityksen toiminnanohjausjärjestelmästä.
Resumo:
Tämän diplomityön tavoitteena on kehittää sopiva analyyttinen menetelmä muokatun kraft-sellukuidun substituutioasteen (DS) kvantitatiivista määrittämistä varten. Muokkauksella tarkoitetaan tässä yhteydessä joko kovalenttisesti tai adsorption avulla tapahtuvaa molekyylin kiinnittymistä sellukuidun pinnalle. Työn kirjallisuusosuudessa käsitellään lyhyesti eri muokkaustapoja ja yhdisteitä joiden avulla voidaan saavuttaa haluttuja ominaisuuksia sellusta valmistetuille lopputuotteille. Lisäksi kirjallisuusosuudessa käydään läpi käyttötarkoitukseen soveltuvimpia suoria ja epäsuoria analyysimenetelmiä. Analyysimenetelmistä kaikkein lupaavimpia testattiin työn kokeellisessa osassa. Diplomityön kokeellisessa osassa keskityttiin kehittämään muokatulle sellulle kvantitatiivista menetelmää DS:n määrittämiseksi Fourier-muunnos infrapuna-vaimennettu kokonaisheijastus (FTIR-ATR) spektrometrillä. Kirjallisuuskatsauksessa ei löytynyt yhtään dokumentoitua tutkimusta, jossa FTIR-ATR menetelmää olisi käytetty muokatun sellukuidun kvantitatiiviseen tutkimukseen. Muiden analyysimenetelmien, kuten alkuaineanalyysin, termogravimetrisen analyysin (TGA) ja valomikroskopian avulla pyrittiin tuottamaan lisätietoa muokkauksesta. Kvantitatiivisen FTIR-ATR menetelmän kehitykseen käytetyt muokatut sellukuidut olivat selluloosa-asetaattia ja selluloosa betainaattia. Saatujen tulosten perusteella muokattujen sulfiitti- ja kraft sellukuitujen DS:n kvantitatiivinen määrittäminen on mahdollista FTIR-ATR menetelmällä. Vähäinen kalibrointipisteiden määrä vaikeutti tarkan analyysimenetelmän tekemistä. Kehitetyn menetelmän suurimpina ongelmina olivat kiinteiden näytteiden heterogeenisyys sekä mahdollisten epäpuhtauksien tunnistaminen. Jatkotutkimusten avulla kehitettyä menetelmää on kuitenkin mahdollista käyttää muokattujen sellukuitujen jatkuvaan analysointiin selluteollisuudessa.