3 resultados para potentiometric stripping analysis

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potentiometric sensors are very attractive tools for chemical analysis because of their simplicity, low power consumption and low cost. They are extensively used in clinical diagnostics and in environmental monitoring. Modern applications of both fields require improvements in the conventional construction and in the performance of the potentiometric sensors, as the trends are towards portable, on-site diagnostics and autonomous sensing in remote locations. The aim of this PhD work was to improve some of the sensor properties that currently hamper the implementation of the potentiometric sensors in modern applications. The first part of the work was concentrated on the development of a solid-state reference electrode (RE) compatible with already existing solid-contact ion-selective electrodes (ISE), both of which are needed for all-solid-state potentiometric sensing systems. A poly(vinyl chloride) membrane doped with a moderately lipophilic salt, tetrabutylammonium-tetrabutylborate (TBA-TBB), was found to show a satisfactory stability of potential in sample solutions with different concentrations. Its response time was nevertheless slow, as it required several minutes to reach the equilibrium. The TBA-TBB membrane RE worked well together with solid-state ISEs in several different situations and on different substrates enabling a miniature design. Solid contacts (SC) that mediate the ion-to-electron transduction are crucial components of well-functioning potentiometric sensors. This transduction process converting the ionic conduction of an ion-selective membrane to the electronic conduction in the circuit was studied with the help of electrochemical impedance spectroscopy (EIS). The solid contacts studied were (i) the conducting polymer (CP) poly(3,4-ethylienedioxythiophene) (PEDOT) and (ii) a carbon cloth having a high surface area. The PEDOT films were doped with a large immobile anion poly(styrene sulfonate) (PSS-) or with a small mobile anion Cl-. As could be expected, the studied PEDOT solid-contact mediated the ion-toelectron transduction more efficiently than the bare glassy carbon substrate, onto which they were electropolymerized, while the impedance of the PEDOT films depended on the mobility of the doping ion and on the ions in the electrolyte. The carbon cloth was found to be an even more effective ion-to-electron transducer than the PEDOT films and it also proved to work as a combined electrical conductor and solid contact when covered with an ion-selective membrane or with a TBA-TBB-based reference membrane. The last part of the work was focused on improving the reproducibility and the potential stability of the SC-ISEs, a problem that culminates to the stability of the standard potential E°. It was proven that the E° of a SC-ISE with a conducting polymer as a solid contact could be adjusted by reducing or oxidizing the CP solid contact by applying current pulses or a potential to it, as the redox state of the CP solid-contact influences the overall potential of the ISE. The slope and thus the analytical performance of the SC-ISEs were retained despite the adjustment of the E°. The shortcircuiting of the SC-ISE with a conventional large-capacitance RE was found to be a feasible instrument-free method to control the E°. With this method, the driving force for the oxidation/reduction of the CP was the potential difference between the RE and the SC-ISE, and the position of the adjusted potential could be controlled by choosing a suitable concentration for the short-circuiting electrolyte. The piece-to-piece reproducibility of the adjusted potential was promising, and the day-today reproducibility for a specific sensor was excellent. The instrumentfree approach to control the E° is very attractive considering practical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this Master’s thesis is to find a method for classifying spare part criticality in the case company. Several approaches exist for criticality classification of spare parts. The practical problem in this thesis is the lack of a generic analysis method for classifying spare parts of proprietary equipment of the case company. In order to find a classification method, a literature review of various analysis methods is required. The requirements of the case company also have to be recognized. This is achieved by consulting professionals in the company. The literature review states that the analytic hierarchy process (AHP) combined with decision tree models is a common method for classifying spare parts in academic literature. Most of the literature discusses spare part criticality in stock holding perspective. This is relevant perspective also for a customer orientated original equipment manufacturer (OEM), as the case company. A decision tree model is developed for classifying spare parts. The decision tree classifies spare parts into five criticality classes according to five criteria. The criteria are: safety risk, availability risk, functional criticality, predictability of failure and probability of failure. The criticality classes describe the level of criticality from non-critical to highly critical. The method is verified for classifying spare parts of a full deposit stripping machine. The classification can be utilized as a generic model for recognizing critical spare parts of other similar equipment, according to which spare part recommendations can be created. Purchase price of an item and equipment criticality were found to have no effect on spare part criticality in this context. Decision tree is recognized as the most suitable method for classifying spare part criticality in the company.