4 resultados para plant communities
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Appendix: List of species found in boundaries
Resumo:
The biological variation in nature is called biodiversity. Anthropogenic pressures have led to a loss of biodiversity, alarming scientists as to what consequences declining diversity has for ecosystem functioning. The general consensus is that diversity (e.g. species richness or identity) affects functioning and provides services from which humans benefit. The aim of this thesis was to investigate how aquatic plant species richness and identity affect ecosystem functioning in terms of processes such as primary production, nutrient availability, epifaunal colonization and properties e.g. stability of Zostera marina subjected to shading. The main work was carried out in the field and ranged temporally from weeklong to 3.5 months-long experiments. The experimental plants used frequently co-occur in submerged meadows in the northern Baltic Sea and consist of eelgrass (Z. marina), perfoliate pondweed (Potamogeton perfoliatus), sago pondweed (P. pectinatus), slender-leaved pondweed (P. filiformis) and horned pondweed (Zannichellia palustris). The results showed that plant richness affected epifaunal community variables weakly, but had a strong positive effect on infaunal species number and functional diversity, while plant identity had strong effects on amphipods (Gammarus spp.), of which abundances were higher in plant assemblages consisting of P. perfoliatus. Depending on the starting standardizing unit, plant richness showed varying effects on primary production. In shoot density-standardized plots, plant richness increased the shoot densities of three out of four species and enhanced the plant biomass production. Both positive complementarity and selection effects were found to underpin the positive biodiversity effects. In shoot biomass-standardized plots, richness effects only affected biomass production of one species. Negative selection was prevalent, counteracting positive complementarity, which resulted in no significant biodiversity effect. The stability of Z. marina was affected by plant richness in such that Z. marina growing in polycultures lost proportionally less biomass than Z. marina in monocultures and thus had a higher resistance to shading. Monoculture plants in turn gained biomass faster, and thereby had a faster recovery than Z. marina growing in polycultures. These results indicate that positive interspecific interactions occurred during shading, while the faster recovery of monocultures suggests that the change from shading stress to recovery resulted in a shift from positive interactions to resource competition between species. The results derived from this thesis show that plant diversity affects ecosystem functioning and contribute to the growing knowledge of plant diversity being an important component of aquatic ecosystems. Diverse plant communities sustain higher primary productivity than comparable monocultures, affect faunal communities positively and enhance stability. Richness and identity effects vary, and identity has generally stronger effects on more variables than richness. However, species-rich communities are likely to contain several species with differing effects on functions, which renders species richness important for functioning. Mixed meadows add to coastal ecosystem functioning in the northern Baltic Sea and may provide with services essential for human well-being.
Resumo:
Shallow coastal areas are dynamic habitats that are affected by a variety of abiotic and biotic factors. In addition to the natural environmental stress, estuarine and coastal seagrass ecosystems are exposed to effects of climate change and other anthropogenic impacts. In this thesis the effect of different abiotic (shading stress, salinity and temperature) and biotic stressors (presence of co-occurring species) and different levels and combinations of stressors on the performance and survival of eelgrass (Zostera marina) was assessed. To investigate the importance of scale for stress responses, varying levels of biological organization (genotype, life stage, population and plant community) were studied in field and aquarium experiments. Light limitation, decreased salinity and increased temperature affected eelgrass performance negatively in papers I, II and III, respectively. While co-occurring plant species had no notable effect on eelgrass in paper IV, the presence of eelgrass increased the biomass of Potamogeton perfoliatus. The findings in papers II and III confirmed that more extreme levels of salinity and temperature had stronger impacts on plant performance compared to intermediate levels, but intermediate levels also had more severe effects on plants when they were exposed to several stressors, as illustrated in paper II. Thus, multiple stressors had negative synergetic effects. The results in papers I, II and III indicate that future changes in light climate, salinity and temperature can have serious impacts on eelgrass performance and survival. Stress responses were found to vary among genotypes, life stages and populations in papers I, II and III, respectively, emphasizing the importance of study scale. The results demonstrate that while stress in general affects seagrass productivity negatively, the severity of effects can vary substantially depending on the studied scale or level of biological organization. Eelgrass genotypes can differ in their stress and recovery processes, as observed in paper I. In paper II, eelgrass seedlings were less prone to abiotic stress compared to adult plants, but stress also decreased their survival considerably. This indicates that recruitment and re-colonization through seeds might be threatened in the future. Variation among population responses observed in paper III indicates that long-term local adaptation under differing selection pressures has caused divergence in salinity tolerance between Baltic eelgrass populations. This variability in stress tolerance observed in papers I and III suggests that some eelgrass genotypes and populations have a better capacity to adapt to changes and survive in a changing environment. Multiple stressors and biological level-specific responses demonstrate the uncertainty in predicting eelgrass responses in a changing environment. As eelgrass populations may differ in their stress tolerance both within and across regions, conservation strategies at both local and regional scales are urgently needed in order to ensure the survival of these important ecosystems.