44 resultados para organic solution
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Separation of carboxylic acids from aqueous streams is an important part of their manufacturing process. The aqueous solutions are usually dilute containing less than 10 % acids. Separation by distillation is difficult as the boiling points of acids are only marginally higher than that of water. Because of this distillation is not only difficult but also expensive due to the evaporation of large amounts of water. Carboxylic acids have traditionally been precipitated as calcium salts. The yields of these processes are usually relatively low and the chemical costs high. Especially the decomposition of calcium salts with sulfuric acid produces large amounts of calcium sulfate sludge. Solvent extraction has been studied as an alternative method for recovery of carboxylic acids. Solvent extraction is based on mixing of two immiscible liquids and the transfer of the wanted components form one liquid to another due to equilibrium difference. In the case of carboxylic acids, the acids are transferred from aqueous phase to organic solvent due to physical and chemical interactions. The acids and the extractant form complexes which are soluble in the organic phase. The extraction efficiency is affected by many factors, for instance initial acid concentration, type and concentration of the extractant, pH, temperature and extraction time. In this paper, the effects of initial acid concentration, type of extractant and temperature on extraction efficiency were studied. As carboxylic acids are usually the products of the processes, they are wanted to be recovered. Hence the acids have to be removed from the organic phase after the extraction. The removal of acids from the organic phase also regenerates the extractant which can be then recycled in the process. The regeneration of the extractant was studied by back-extracting i.e. stripping the acids form the organic solution into diluent sodium hydroxide solution. In the solvent regeneration, the regenerability of different extractants and the effect of initial acid concentration and temperature were studied.
Resumo:
Orgaanisten yhdisteiden negatiivinen retentio nanosuodatuksessa on ilmiö, jota eiole kovin paljon tutkittu. Negatiivisen retentioon vaikuttavat syyt tai tekijäteivät ole kovin hyvin tiedossa. Erotusmenetelmänä negatiivinen retentio voi olla käyttökelpoinen tietyissä sovelluksissa. Työn kirjallisuusosa käsittelee nanosuodatuksen erotusmekanismeja ja retentioon vaikuttavia tekijöitä. Myös joitakin malleja on esitetty. Nanosuodatus on monimutkainen prosessi, josta ei voida löytää vain yhtä erotusmekanismia tai retentioon vaikuttavaa tekijää. Prosessit ovat kokonaisuuksia, joissa erottumiseen vaikuttavat syöttöliuoksen, erotettavan komponentin ja kalvon ominaisuudet, ja niiden väliset vuorovaikutukset. Työn kokeellisessa osassa koottiin mahdollisimman paljon esimerkkejä, joissa monosakkaridien negatiivinen retentio ilmenee. Muita orgaanisia ja epäorgaanisia yhdisteitä käytettiin 'häiriöyhdisteinä' syöttöliuoksessa monosakkaridien kanssa. Kokeet suoritettiin kahdella laboratoriomittakaavan suodatuslaitteella käyttäen kahta kaupallista nanosuodatuskalvoa. Negatiivinen retentio ilmeni useissa tapauksissa. Permeaattivuon ja 'häiriöyhdisteiden' pitoisuuksien havaittiin vaikuttavan voimakkaasti negatiivisen retention ilmenemiseen.
Resumo:
Crystal growth is an essential phase in crystallization kinetics. The rate of crystal growth provides significant information for the design and control of crystallization processes; nevertheless, obtaining accurate growth rate data is still challenging due to a number of factors that prevail in crystal growth. In industrial crystallization, crystals are generally grown from multi-componentand multi-particle solutions under complicated hydrodynamic conditions; thus, it is crucial to increase the general understanding of the growth kinetics in these systems. The aim of this work is to develop a model of the crystal growth rate from solution. An extensive literature review of crystal growth focuses on themodelling of growth kinetics and thermodynamics, and new measuring techniques that have been introduced in the field of crystallization. The growth of a singlecrystal is investigated in binary and ternary systems. The binary system consists of potassium dihydrogen phosphate (KDP, crystallizing solute) and water (solvent), and the ternary system includes KDP, water and an organic admixture. The studied admixtures, urea, ethanol and 1-propanol, are employed at relatively highconcentrations (of up to 5.0 molal). The influence of the admixtures on the solution thermodynamics is studied using the Pitzer activity coefficient model. Theprediction method of the ternary solubility in the studied systems is introduced and verified. The growth rate of the KDP (101) face in the studied systems aremeasured in the growth cell as a function of supersaturation, the admixture concentration, the solution velocity over a crystal and temperature. In addition, the surface morphology of the KDP (101) face is studied using ex situ atomic force microscopy (AFM). The crystal growth rate in the ternary systems is modelled on the basis of the two-step growth model that contains the Maxwell-Stefan (MS) equations and a surface-reaction model. This model is used together with measuredcrystal growth rate data to develop a new method for the evaluation of the model parameters. The validation of the model is justified with experiments. The crystal growth rate in an imperfectly mixed suspension crystallizer is investigatedusing computational fluid dynamics (CFD). A solid-liquid suspension flow that includes multi-sized particles is described by the multi-fluid model as well as by a standard k-epsilon turbulence model and an interface momentum transfer model. The local crystal growth rate is determined from calculated flow information in a diffusion-controlled crystal growth regime. The calculated results are evaluated experimentally.
Resumo:
The pulsed dielectric barrier discharge (PDBD) and pulsed corona discharge (PCD) were compared for their efficiency to degrade phenol in water solution. Results show that PCD has higher efficiency than PDBD to degrade phenol. When initial pH of water solution was elevated, phenol degradation in the PCD reactor was significantly enhanced, although no considerable effect was seen in the PDBD reactor. The PCD reactor was also able to degrade lignin significantly, both in synthetically prepared solution and in pulp and paper mill wastewater. Water temperature did not affect phenol degradation; however, lignin was better oxidized at lower temperature.
Resumo:
Liquid-liquid extraction is a mass transfer process for recovering the desired components from the liquid streams by contacting it to non-soluble liquid solvent. Literature part of this thesis deals with theory of the liquid-liquid extraction and the main steps of the extraction process design. The experimental part of this thesis investigates the extraction of organic acids from aqueous solution. The aim was to find the optimal solvent for recovering the organic acids from aqueous solutions. The other objective was to test the selected solvent in pilot scale with packed column and compare the effectiveness of the structured and the random packing, the effect of dispersed phase selection and the effect of packing material wettability properties. Experiments showed that selected solvent works well with dilute organic acid solutions. The random packing proved to be more efficient than the structured packing due to higher hold-up of the dispersed phase. Dispersing the phase that is present in larger volume proved to more efficient. With the random packing the material that was wetted by the dispersed phase was more efficient due to higher hold-up of the dispersed phase. According the literature, the behavior is usually opposite.
Resumo:
This MSc work was done in the project of BIOMECON financed by Tekes. The prime target of the research was, to develop methods for separation and determination of carbohydrates (sugars), sugar acids and alcohols, and some other organic acids in hydrolyzed pulp samples by capillary electrophoresis (CE) using UV detection. Aspen, spruce, and birch pulps are commonly used for production of papers in Finland. Feedstock components in pulp predominantly consist of carbohydrates, organic acids, lignin, extractives, and proteins. Here in this study, pulps have been hydrolyzed in analytical chemistry laboratories of UPM Company and Lappeenranta University in order to convert them into sugars, acids, alcohols, and organic acids. Foremost objective of this study was to quantify and identify the main and by-products in the pulp samples. For the method development and optimization, increased precision in capillary electrophoresis was accomplished by calculating calibration data of 16 analytes such as D-(-)-fructose, D(+)-xylose, D(+)-mannose, D(+)-cellobiose, D-(+)-glucose, D-(+)-raffinose, D(-)-mannitol, sorbitol, rhamnose, sucrose, xylitol, galactose, maltose, arabinose, ribose, and, α-lactose monohydratesugars and 16 organic acids such as D-glucuronic, oxalic, acetic, propionic, formic, glycolic, malonic, maleic, citric, L-glutamic, tartaric, succinic, adipic, ascorbic, galacturonic, and glyoxylic acid. In carbohydrate and polyalcohol analyses, the experiments with CE coupled to direct UV detection and positive separation polarity was performed in 36 mM disodium hydrogen phosphate electrolyte solution. For acid analyses, CE coupled indirect UV detection, using negative polarity, and electrolyte solution made of 2,3 pyridinedicarboxylic acid, Ca2+ salt, Mg2+ salts, and myristyltrimethylammonium hydroxide in water was used. Under optimized conditions, limits of detection, relative standard deviations and correlation coefficients of each compound were measured. The optimized conditions were used for the identification and quantification of carbohydrates and acids produced by hydrolyses of pulp. The concentrations of the analytes varied between 1 mg – 0.138 g in liter hydrolysate.
Resumo:
The main advantage of organic electronics over the more widespread inorganic counterparts lies not in the electrical performance, but rather in the solution processability that opens up for low-cost flexible electronics (e.g. displays, sensors and smart tags) fabricated by using printing techniques. Replacing the commonly used laboratory-scale fabrication techniques with mass-printing techniques is, however, truly challenging, especially when low-voltage operation is required. In this thesis it is, nevertheless, demonstrated that low-voltage organic transistors can be fully printed with a similar performance to that of transistors made by laboratory scale techniques. The use of an ion-modulated type of organic field effect transistor (OFET) not only enabled low-voltage operation and printability, but was also found to result in low sensitivity to the surface roughness of the substrate. This allows not only the use of low-cost plastic substrates, but even the use of paper as a substrate. However, while absorption into the porous paper surface is advantageous in a graphical printing process, by reducing the spreading and the coffee-stain effect and by improving the adhesion, it provides great challenges when applying thin electrically active layers. In spite of these difficulties we were able to demonstrate the first low-voltage OFET to be fabricated on paper. We have also shown that low-cost incandescent lamps can be used for sintering printed metal-nanoparticles, and that the process was especially suitable on paper and compatible with a roll-to-roll manufacturing process.
Resumo:
Advanced oxidation processes (AOPs) have been studied and developed to suffice the effective removal of refractory and toxic compounds in polluted water. The quality and cost of wastewater treatment need improvements, and electric discharge technology has a potential to make a significant difference compared to other established AOPs based on energy efficiency. The generation of active oxidant species such as ozone and hydroxyl radicals by high voltage discharge is a relatively new technology for water treatment. Gas-phase pulsed corona discharge (PCD), where a treated aqueous solution is dispersed between corona-producing electrodes free of the dielectric barriers, was developed as an alternative approach to the problem. The short living radicals and ozone formed in the gas phase and at the gas-liquid interface react with dissolved impurities. PCD equipment has a relatively simple configuration, and with the reactor in an enclosed compartment, it is insensitive towards gas humidity and does not need the gas transport. In this thesis, PCD was used to study and evaluate the energy efficiency for degrading various organic compounds, as well as the chemistry of the oxidation products formed. The experiments investigate the aqueous oxidation of phenol, humic substances, pharmaceutical compounds (paracetamol, ibuprofen, indomethacin, salicylic acids, -estradiol), as well as lignin degradation and transformation to aldehydes. The study aims to establish the influence of initial concentration of the target pollutant, the pulsed discharge parameters, gas phase composition and the pH on the oxidation kinetics and the efficiency. Analytical methods to measure the concentrations of the target compounds and their by-products include HPLC, spectrophotometry, TOC and capillary electrophoresis. The results of the research included in this summary are presented in the attached publications and manuscripts accepted for publication. Pulsed corona discharge proved to be highly effective in oxidizing each of the target compounds, surpassing the closest competitor, conventional ozonation. The increase in oxidation efficiencies for some compounds in oxygen media and at lower pulse repetition frequencies shows a significant role of ozone. The role of the ·OH radicals was established in the surface reactions. The main oxidation products, formation of nitrates, and the lignin transformation were quantified. A compound specific approach is suggested for optimization of the PCD parameters that have the most significant impact on the oxidation energy efficiency because of the different characteristics and responses of the target compound to the oxidants, as well as different admixtures that are present in the wastewater. Further studies in the method’s safety (nitration and nitrosation of organic compounds, nitrite and nitrate formation enhancement) are needed for promoting the method.
Resumo:
Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.
Resumo:
The aim of this master's thesis is to develop a two-dimensional drift-di usion model, which describes charge transport in organic solar cells. The main bene t of a two-dimensional model compared to a one-dimensional one is the inclusion of the nanoscale morphology of the active layer of a bulk heterojunction solar cell. The developed model was used to study recombination dynamics at the donor-acceptor interface. In some cases, it was possible to determine e ective parameters, which reproduce the results of the two-dimensional model in the one-dimensional case. A summary of the theory of charge transport in semiconductors was presented and discussed in the context of organic materials. Additionally, the normalization and discretization procedures required to nd a numerical solution to the charge transport problem were outlined. The charge transport problem was solved by implementing an iterative scheme called successive over-relaxation. The obtained solution is given as position-dependent electric potential, free charge carrier concentrations and current densities in the active layer. An interfacial layer, separating the pure phases, was introduced in order to describe charge dynamics occurring at the interface between the donor and acceptor. For simplicity, an e ective generation of free charge carriers in the interfacial layer was implemented. The pure phases simply act as transport layers for the photogenerated charges. Langevin recombination was assumed in the two-dimensional model and an analysis of the apparent recombination rate in the one-dimensional case is presented. The recombination rate in a two-dimensional model is seen to e ectively look like reduced Langevin recombination at open circuit. Replicating the J-U curves obtained in the two-dimensional model is, however, not possible by introducing a constant reduction factor in the Langevin recombination rate. The impact of an acceptor domain in the pure donor phase was investigated. Two cases were considered, one where the acceptor domain is isolated and another where it is connected to the bulk of the acceptor. A comparison to the case where no isolated domains exist was done in order to quantify the observed reduction in the photocurrent. The results show that all charges generated at the isolated domain are lost to recombination, but the domain does not have a major impact on charge transport. Trap-assisted recombination at interfacial trap states was investigated, as well as the surface dipole caused by the trapped charges. A theoretical expression for the ideality factor n_id as a function of generation was derived and shown to agree with simulation data. When the theoretical expression was fitted to simulation data, no interface dipole was observed.
Resumo:
Selostus: Haihtuvien orgaanisten yhdisteiden muodostuminen kuivikkeissa
Resumo:
Summary