4 resultados para ocean heat content

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vanerin tai kertopuun valmistusprosessissaviilun kuivaukseen käytetään suurin osa koko valmistusprosessin primäärienergiasta. Viilunkuivauskoneessa viilun sisältämä vesi siirretään tyypillisesti prosessihöyryllä lämmitettyyn viilunkuivaajan kiertoilmaan höyrystämällä ja poistetaanviilunkuivaajasta poistoilman mukana. Viilunkuivaajan poistoilma on lämmintä jaerittäin suuren kosteuspitoisuutensa takia sisältää runsaasti energiaa. Tyypillisellä viilunkuivaajalla poistoilmaan sitoutunut lämpöteho vaihtelee prosessiolosuhteista riippuen välillä 2,7-5,7 MW. Diplomityössä tutkittiin viilunkuivaajan poistoilman sisältämän lämmön talteenottoa laitteistolla, johon kuuluu lämmöntalteenottopesuri, jossa poistoilmalla lämmitetään tuotantolaitoksen tukkipuun hautomon kiertovettä sekä ilma-ilma-lämmönsiirrin, jolla lämmitetään pesurista poistuvan ilman jäännöslämmöllä ulkoilmaa tehdassalin tuloilmakäyttöön. Työn tavoitteena oli kehittää lämmöntalteenottojärjestelmän suunnittelua, mitoitusta ja ajotapoja. Työssä analysoitiin teoreettisesti pesuria ja ilmalämmönsiirrintä, kehitettiin lämmöntalteenottopesurin simulointimenetelmä ja mitattiin toiminnassa olevia talteenottolaitteistoja. Tutkimuksessa todettiin lämmöntalteenottohyötysuhteen vaihtelevan lämmityskaudella välillä 50-70 %. Lämmöntalteenottolaitteiston pesurin veteen saatava teho riippuu ensisijaisesti viilunkuivaajan poistoilman lämpösisällöstä, joka on enimmäkseen kosteusriippuvainen ja ilmanvaihtoilmaan saatava teho ulkolämpö-tilan määräämästä tehontarpeesta. Pesurin vesijärjestelmän vaikutusmekanismit pesurin suorituskykyyn tunnistettiin ja niiden pohjalta annetaan suositukset mitoitukseen ja ajotapaan. Lämmöntalteenottolaitteiston lämpötehon tasapainottamiseen pesurin ja ilma-ilma-lämmönsiirtimen välillä mitoituksen avulla esitellään työkalut.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following over 170+ pages and additional appendixes are formed based on content of Course: Fundamentals of Heat Transfer. Mainly this summarizes relevant parts on Book of Fundamentals of Heat and Mass Transfer (Incropera), but also other references introducing the same concepts are included. Student’s point of view has been consideredwith following highlights: (1) Relevant topics are presented in a nutshell to provide fast digestion of principles of heat transfer. (2) Appendixes include terminology dictionary. (3) Totally 22 illustrating examples are connecting theory to practical applications and quantifying heat transfer to understandable forms as: temperatures, heat transfer rates, heat fluxes, resistances and etc. (4) Most important Learning outcomes are presented for each topic separately. The Book, Fundamentals of Heat and Mass Transfer (Incropera), is certainly recommended for those going beyond basic knowledge of heat transfer. Lecture Notes consists of four primary content-wise objectives: (1) Give understanding to physical mechanisms of heat transfer, (2)Present basic concepts and terminology relevant for conduction, convection and radiation (3) Introduce thermal performance analysis methods for steady state and transient conduction systems. (4) Provide fast-to-digest phenomenological understanding required for basic design of thermal models

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More discussion is required on how and which types of biomass should be used to achieve a significant reduction in the carbon load released into the atmosphere in the short term. The energy sector is one of the largest greenhouse gas (GHG) emitters and thus its role in climate change mitigation is important. Replacing fossil fuels with biomass has been a simple way to reduce carbon emissions because the carbon bonded to biomass is considered as carbon neutral. With this in mind, this thesis has the following objectives: (1) to study the significance of the different GHG emission sources related to energy production from peat and biomass, (2) to explore opportunities to develop more climate friendly biomass energy options and (3) to discuss the importance of biogenic emissions of biomass systems. The discussion on biogenic carbon and other GHG emissions comprises four case studies of which two consider peat utilization, one forest biomass and one cultivated biomasses. Various different biomass types (peat, pine logs and forest residues, palm oil, rapeseed oil and jatropha oil) are used as examples to demonstrate the importance of biogenic carbon to life cycle GHG emissions. The biogenic carbon emissions of biomass are defined as the difference in the carbon stock between the utilization and the non-utilization scenarios of biomass. Forestry-drained peatlands were studied by using the high emission values of the peatland types in question to discuss the emission reduction potential of the peatlands. The results are presented in terms of global warming potential (GWP) values. Based on the results, the climate impact of the peat production can be reduced by selecting high-emission-level peatlands for peat production. The comparison of the two different types of forest biomass in integrated ethanol production in pulp mill shows that the type of forest biomass impacts the biogenic carbon emissions of biofuel production. The assessment of cultivated biomasses demonstrates that several selections made in the production chain significantly affect the GHG emissions of biofuels. The emissions caused by biofuel can exceed the emissions from fossil-based fuels in the short term if biomass is in part consumed in the process itself and does not end up in the final product. Including biogenic carbon and other land use carbon emissions into the carbon footprint calculations of biofuel reveals the importance of the time frame and of the efficiency of biomass carbon content utilization. As regards the climate impact of biomass energy use, the net impact on carbon stocks (in organic matter of soils and biomass), compared to the impact of the replaced energy source, is the key issue. Promoting renewable biomass regardless of biogenic GHG emissions can increase GHG emissions in the short term and also possibly in the long term.