9 resultados para nuclear charge radius, laser spectroscopy, isotope shift, halo nucleus, lithium

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coherent anti-Stokes Raman scattering is the powerful method of laser spectroscopy in which significant successes are achieved. However, the non-linear nature of CARS complicates the analysis of the received spectra. The objective of this Thesis is to develop a new phase retrieval algorithm for CARS. It utilizes the maximum entropy method and the new wavelet approach for spectroscopic background correction of a phase function. The method was developed to be easily automated and used on a large number of spectra of different substances.. The algorithm was successfully tested on experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrolyte solutions are of importance in a wide range of scientific contexts and as such have attracted considerable theoretical and experimental effort over many years. Nuclear Magnetic resonance provides a precise and versatile tool for investigation of electrolyte solutions, both in water and in organic solvents. Many structural and dynamic properties can be obtained through NMR experiments. The solution of aluminum chloride in water was studied. Different concentrations were taken for investigation. Independence of maximum line shift from concentration and acidity was shown. Six-coordinated structure of solvation shell was confirmed by experiments on 'H and 27A1 nuclei. Diffusion coefficients were studied. The solution of nickel chloride in methanol was studied. Lines, corresponding to coordinated and bulk methanol were found. Four-, five- and six-coordinated structures were found in different temperatures. The line for coordinated -OD group of deuterated methanol was observed on 2H spectrum for the first time. Partial deuteration of CH3 group was detected. Inability to observe coordinated -OH group was explained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of gamma spectrometry and gamma and X-ray tomography of nuclear fuel is to determine both radionuclide concentration and integrity and deformation of nuclear fuel. The aims of this thesis have been to find out the basics of gamma spectrometry and tomography of nuclear fuel, to find out the operational mechanisms of gamma spectrometry and tomography equipment of nuclear fuel, and to identify problems that relate to these measurement techniques. In gamma spectrometry of nuclear fuel the gamma-ray flux emitted from unstable isotopes is measured using high-resolution gamma-ray spectroscopy. The production of unstable isotopes correlates with various physical fuel parameters. In gamma emission tomography the gamma-ray spectrum of irradiated nuclear fuel is recorded for several projections. In X-ray transmission tomography of nuclear fuel a radiation source emits a beam and the intensity, attenuated by the nuclear fuel, is registered by the detectors placed opposite. When gamma emission or X-ray transmission measurements are combined with tomographic image reconstruction methods, it is possible to create sectional images of the interior of nuclear fuel. MODHERATO is a computer code that simulates the operation of radioscopic or tomographic devices and it is used to predict and optimise the performance of imaging systems. Related to the X-ray tomography, MODHERATO simulations have been performed by the author. Gamma spectrometry and gamma and X-ray tomography are promising non-destructive examination methods for understanding fuel behaviour under normal, transient and accident conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel cantilever pressure sensor was developed in the Department of Physics at the University of Turku in order to solve the sensitivity problems which are encountered when condenser microphones are used in photoacoustic spectroscopy. The cantilever pressure sensor, combined with a laser interferometer for the measurement of the cantilever movements, proved to be highly sensitive. The original aim of this work was to integrate the sensor in a photoacoustic gas detector working in a differential measurement scheme. The integration was made successfully into three prototypes. In addition, the cantilever was also integrated in the photoacoustic FTIR measurement schemes of gas-, liquid-, and solid-phase samples. A theoretical model for the signal generation in each measurement scheme was created and the optimal celldesign discussed. The sensitivity and selectivity of the differential method were evaluated when a blackbody radiator and a mechanical chopper were used with CO2, CH4, CO, and C2H4 gases. The detection limits were in the sub-ppm level for all four gases with only a 1.3 second integration time and the cross interference was well below one percent for all gas combinations other than those between hydrocarbons. Sensitivity with other infrared sources was compared using ethylene as an example gas. In the comparison of sensitivity with different infrared sources the electrically modulated blackbody radiator gave a 35 times higher and the CO2-laser a 100 times lower detection limit than the blackbody radiator with a mechanical chopper. As a conclusion, the differential system is well suited to rapid single gas measurements. Gas-phase photoacoustic FTIR spectroscopy gives the best performance, when several components have to be analyzed simultaneously from multicomponent samples. Multicomponent measurements were demonstrated with a sample that contained different concentrations of CO2, H2O, CO, and four different hydrocarbons. It required an approximately 10 times longer measurement time to achieve the same detection limit for a single gas as with the differential system. The properties of the photoacoustic FTIR spectroscopy were also compared to conventional transmission FTIR spectroscopy by simulations. Solid- and liquid-phase photoacoustic FTIR spectroscopy has several advantages compared to other techniques and therefore it also has a great variety of applications. A comparison of the signal-to-noise ratio between photoacoustic cells with a cantilever microphone and a condenser microphone was done with standard carbon black, polyethene, and sunflower oil samples. The cell with the cantilever microphone proved to have a 5-10 times higher signal-to-noise ratio than the reference detector, depending on the sample. Cantilever enhanced photoacoustics will be an effective tool for gas detection and analysis of solid- and liquid-phase samples. The preliminary prototypes gave good results in all three measurement schemes that were studied. According to simulations, there are possibilities for further enhancement of the sensitivity, as well as other properties, of each system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis three experiments with atomic hydrogen (H) at low temperatures T<1 K are presented. Experiments were carried out with two- (2D) and three-dimensional (3D) H gas, and with H atoms trapped in solid H2 matrix. The main focus of this work is on interatomic interactions, which have certain specific features in these three systems considered. A common feature is the very high density of atomic hydrogen, the systems are close to quantum degeneracy. Short range interactions in collisions between atoms are important in gaseous H. The system of H in H2 differ dramatically because atoms remain fixed in the H2 lattice and properties are governed by long-range interactions with the solid matrix and with H atoms. The main tools in our studies were the methods of magnetic resonance, with electron spin resonance (ESR) at 128 GHz being used as the principal detection method. For the first time in experiments with H in high magnetic fields and at low temperatures we combined ESR and NMR to perform electron-nuclear double resonance (ENDOR) as well as coherent two-photon spectroscopy. This allowed to distinguish between different types of interactions in the magnetic resonance spectra. Experiments with 2D H gas utilized the thermal compression method in homogeneous magnetic field, developed in our laboratory. In this work methods were developed for direct studies of 3D H at high density, and for creating high density samples of H in H2. We measured magnetic resonance line shifts due to collisions in the 2D and 3D H gases. First we observed that the cold collision shift in 2D H gas composed of atoms in a single hyperfine state is much smaller than predicted by the mean-field theory. This motivated us to carry out similar experiments with 3D H. In 3D H the cold collision shift was found to be an order of magnitude smaller for atoms in a single hyperfine state than that for a mixture of atoms in two different hyperfine states. The collisional shifts were found to be in fair agreement with the theory, which takes into account symmetrization of the wave functions of the colliding atoms. The origin of the small shift in the 2D H composed of single hyperfine state atoms is not yet understood. The measurement of the shift in 3D H provides experimental determination for the difference of the scattering lengths of ground state atoms. The experiment with H atoms captured in H2 matrix at temperatures below 1 K originated from our work with H gas. We found out that samples of H in H2 were formed during recombination of gas phase H, enabling sample preparation at temperatures below 0.5 K. Alternatively, we created the samples by electron impact dissociation of H2 molecules in situ in the solid. By the latter method we reached highest densities of H atoms reported so far, 3.5(5)x1019 cm-3. The H atoms were found to be stable for weeks at temperatures below 0.5 K. The observation of dipolar interaction effects provides a verification for the density measurement. Our results point to two different sites for H atoms in H2 lattice. The steady-state nuclear polarizations of the atoms were found to be non-thermal. The possibility for further increase of the impurity H density is considered. At higher densities and lower temperatures it might be possible to observe phenomena related to quantum degeneracy in solid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interest to hole-doped mixed-valence manganite perovskites is connected to the ‘colossal’ magnetoresistance. This effect or huge drop of the resistivity, ρ, in external magnetic field, B, attains usually the maximum value near the ferromagnetic Curie temperature, TC. In this thesis are investigated conductivity mechanisms and magnetic properties of the manganite perovskite compounds LaMnO3+, La1-xCaxMnO3, La1-xCaxMn1-yFeyO3 and La1- xSrxMn1-yFeyO3. When the present work was started the key role of the phase separation and its influence on the properties of the colossal magnetoresistive materials were not clear. Our main results are based on temperature dependencies of the magnetoresistance and magnetothermopower, investigated in the temperature interval of 4.2 - 300 K in magnetic fields up to 10 T. The magnetization was studied in the same temperature range in weak (up to 0.1 T) magnetic fields. LaMnO3+δ is the parent compound for preparation of the hole-doped CMR materials. The dependences of such parameters as the Curie temperature, TC, the Coulomb gap, Δ, the rigid gap, γ, and the localization radius, a, on pressure, p, are observed in LaMnO3+δ. It has been established that the dependences above can be interpreted by increase of the electron bandwidth and decrease of the polaron potential well when p is increased. Generally, pressure stimulates delocalization of the electrons in LaMnO3+δ. Doping of LaMnO3 with Ca, leading to La1-xCaxMnO3, changes the Mn3+/Mn4+ ratio significantly and brings an additional disorder to the crystal lattice. Phase separation in a form of mixture of the ferromagnetic and the spin glass phases was observed and investigated in La1- xCaxMnO3 at x between 0 and 0.4. Influence of the replacement of Mn by Fe is studied in La0.7Ca0.3Mn1−yFeyO3 and La0.7Sr0.3Mn1−yFeyO3. Asymmetry of the soft Coulomb gap and of the rigid gap in the density of localized states, small shift of the centre of the gaps with respect to the Fermi level and cubic asymmetry of the density of states are obtained in La0.7Ca0.3Mn1−yFeyO3. Damping of TC with y is connected to breaking of the double-exchange interaction by doping with Fe, whereas the irreversibility and the critical behavior of the magnetic susceptibility are determined by the phase separation and the frustrated magnetic state of La0.7Sr0.3Mn1−yFeyO3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical properties of aluminium alloys are strongly influenced by the alloying elements and their concentration. In the case of aluminium alloy EN AW-6060 the main alloying elements are magnesium and silicon. The first goal of this thesis was to determine stability, repeatability and sensitivity as figures of merit of the in-situ melt identification technique. In this study the emissions from the laser welding process were monitored with a spectrometer. With the information produced by the spectrometer, quantitative analysis was conducted to determine the figures of merit. The quantitative analysis concentrated on magnesium and aluminium emissions and their relation. The results showed that the stability of absolute intensities was low, but the normalized magnesium emissions were quite stable. The repeatability of monitoring magnesium emissions was high (about 90 %). Sensitivity of the in-situ melt identification technique was also high. As small as 0.5 % change in magnesium content was detected by the spectrometer. The second goal of this study was to determine the loss of mass during deep penetration laser welding. The amount of magnesium in the material was measured before and after laser welding to determine the loss of magnesium. This study was conducted for aluminium alloy with nominal magnesium content of 0-10 % and for standard material EN AW-6060 that was welded with filler wire AlMg5. It was found that while the magnesium concentration in the material changed, the loss of magnesium remained fairly even. Also by feeding filler wire, the behaviour was similar. Thirdly, the reason why silicon had not been detected in the emission spectrum needed to be explained. Literature research showed that the amount of energy required for silicon to excite is considerably higher compared to magnesium. The energy input in the used welding process is insufficient to excite the silicon atoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure and optical properties of thin films based on C60 materials are studied. Reproducible vacuum method of thin fullerene films production with Cd impurity on Si, glass and mica surfaces is developed. Surface morphology of the films are investigated by AFM and SEM methods. The ab initio quantum - chemical calculations of the geometry, total energy and excited energy states of complex fullerene- cadmium telluride supramolecules are performed. Photoluminescence spectra of composite thin films based on C60 before and after X-ray irradiation were measured. The intensity of additional peaks is defined as the charge composition due to the type of substrate. These results are interpreted as an appearance of the dipole-allowed transitions in the fullerene excited singlet states spectrum cause of an interference with cadmium telluride. X-ray irradiated films were investigated, and additional peaks in photoluminescence spectra were detected. These peaks appear as a result of molecular complexes formation from C60CdTe mixture and dimerization of the films. Density functional B3LYP quantum-chemical calculations for C60CdTe, molecular complexes, (C60)2 and C120O dimers were performed to elucidate some experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membraani on ohut kalvo, jossa on pieniä nanomittakaavan reikiä, jotka erottavat partikkelit ja liuenneet yhdisteet liuoksesta. Membraanisuodatuksen käyttö on lisääntynyt merkittävästi vedenpuhdistuksessa, johtuen lisääntyneestä puhtaan veden tarpeesta ja tiukentuneista ympäristövaatimuksista. Tässä työssä esitellään reaaliaikaisia mittausmenetelmiä membraanin likaantumisen seurantaan. Esiteltyjä menetelmiä ovat suora havainnointi pinnan läpi, lasertriangulometria, varjoanalyysi, taittokykymittaus, kuvakatkaisu-menetelmä, partikkelin nopeusmääritys, radioisotooppinen merkintä ja ydinmagneettinen resonanssispektrometria. Mittausmenetelmien avulla likakerroksen paksuutta ja sen leviämistä on mahdollista seurata reaaliaikaisesti. Mittausmenetelmien soveltuvuus olemassa oleviin prosesseihin on vielä epävarmaa. Suurin osa menetelmistä on rajoittunut tiettyyn membraanin materiaaliin, tietynlaiseen membraanisuodatusprosessin rakenteeseen tai tiettyihin olosuhteisiin. Vallitsevien prosessiolosuhteiden lisäksi mittausanturin tulisi kestää myös puhdistusolosuhteet. Lisätutkimuksia tarvitaan, jotta voidaan löytää toimiva laitekokonaisuus tarvittavan tiedon tuottamiseen.