4 resultados para nonionic emulsifier

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymeeriadsorbentteja valmistetaan silloittamalla styreeniä, akrylaattia tai fenoliformaldehydiä. Useimmiten ristisilloittajana toimii divinyylibentseeni. Polymeeriadsorbenteissa ei itsessään ole ioninvaihtoryhmiä, joten ne sopivat ionittomien ja heikosti ionisoitujen aineiden adsorptioon. Usein polymeeriadsorbentteja käytetään vaihtoehtona aktiivihiilelle eri sovelluksissa. Työn kirjallisuusosassa on katsaus polymeeriadsorbenttien sovelluksiin lähinnä elintarviketeollisuudessa. Lisäksi siinä selvitetään polymeeriadsorbenttien rakennetta ja synteesimenetelmiä. Kokeellisessa osassa tutkittiin valittujen styreeni- ja akrylaattipohjaisten polymeeriadsorbenttien soveltuvuutta kromatografisen erotuksen stationaarifaasiksi. Kromatografia-ajoissa käytettiin eluenttina vettä, jonka lämpötila oli pääasiassa joko 75 tai 125 °C. Jälkimmäisessä lämpötilassa vesi on paineistettua neste, jota kutsutaan myös alikriittiseksi vedeksi. Malliaineina oli eri sokereita, aminohappoja sekä bentsoehappoa ja bentsyylialkoholia. Kromatografisen soveltuvuuden lisäksi selvitettiin adsorbenttien termistä kestävyyttä ja rakennetta. Termisesti polymeeriadsorbentit kestivät hyvin lämpötiloja 125 °C:eseen saakka. Polymeeriadsorbenteilla, joilla on suuri ominaispinta-ala, on myös suuri adsorptiokapasiteetti. Styreenipohjaiset adsorbentit erottivat kaikkia tutkittuja malliaineita akrylaattipohjaisia paremmin. Jotkut adsorbentit eivät erottaneet mitään tutkituista yhdisteistä. Lämpötilan nostaminen kavensi piikkejä ja nopeutti malliaineiden retentoitumista, mutta ei parantanut erottumista.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis was to study the surface modification of reverse osmosis membranes by surfactants and the effect of modification on rejection and flux. The surfactants included anionic and nonionic surfactants. The purpose of membrane modification was to improve pure water permeability with increasing salt rejection. The literature part of the study deals with the basic principles of reverse osmosis technology and factors affecting the membrane performance. Also the membrane surface modification by surfactants and their influence on membrane’s surface properties and efficiency (permeability and salt rejection) were discussed. In the experimental part of the thesis two thin-film composite membranes, Desal AG and LE-4040, were modified on-line with three different surfactants. The effects of process parameters (pressure, pH, and surfactant concentration) on surface modification were also examined. The characteristics of the modified membranes were determined by measuring the membranes’ contact angle and zeta potentials. The zeta potential and contact angle measurements indicate that the surfactants were adsorbed onto the both membranes. However, the adsorption did not effect on membrane’s pure water permeability and salt rejection. Thereby, the surface modification of the Desal AG and LE-4040 membranes by surfactants was not able to improve the membrane’s performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, there have been studies that show a correlation between the hyperactivity of children and use of artificial food additives, including colorants. This has, in part, led to preference of natural products over products with artificial additives. Consumers have also become more aware of health issues. Natural food colorants have many bioactive functions, mainly vitamin A activity of carotenoids and antioxidativity, and therefore they could be more easily accepted by the consumers. However, natural colorant compounds are usually unstable, which restricts their usage. Microencapsulation could be one way to enhance the stability of natural colorant compounds and thus enable better usage for them as food colorants. Microencapsulation is a term used for processes in which the active material is totally enveloped in a coating or capsule, and thus it is separated and protected from the surrounding environment. In addition to protection by the capsule, microencapsulation can also be used to modify solubility and other properties of the encapsulated material, for example, to incorporate fat-soluble compounds into aqueous matrices. The aim of this thesis work was to study the stability of two natural pigments, lutein (carotenoid) and betanin (betalain), and to determine possible ways to enhance their stability with different microencapsulation techniques. Another aim was the extraction of pigments without the use of organic solvents and the development of previously used extraction methods. Stability of pigments in microencapsulated pigment preparations and model foods containing these were studied by measuring the pigment content after storage in different conditions. Preliminary studies on the bioavailability of microencapsulated pigments and sensory evaluation for consumer acceptance of model foods containing microencapsulated pigments were also carried out. Enzyme-assisted oil extraction was used to extract lutein from marigold (Tagetes erecta) flower without organic solvents, and the yield was comparable to solvent extraction of lutein from the same flowers. The effects of temperature, extraction time, and beet:water ratio on extraction efficiency of betanin from red beet (Beta vulgaris) were studied and the optimal conditions for maximum yield and maximum betanin concentration were determined. In both cases, extraction at 40 °C was better than extraction at 80 °C and the extraction for five minutes was as efficient as 15 or 30 minutes. For maximum betanin yield, the beet:water ratio of 1:2 was better, with possibly repeated extraction, but for maximum betanin concentration, a ratio of 1:1 was better. Lutein was incorporated into oil-in-water (o/w) emulsions with a polar oil fraction from oat (Avena sativa) as an emulsifier and mixtures of guar gum and xanthan gum or locust bean gum and xanthan gum as stabilizers to retard creaming. The stability of lutein in these emulsions was quite good, with 77 to 91 percent of lutein being left after storage in the dark at 20 to 22°C for 10 weeks whereas in spray dried emulsions the retention of lutein was 67 to 75 percent. The retention of lutein in oil was also good at 85 percent. Betanin was incorporated into the inner w1 water phase of a water1-in-oil-inwater2 (w1/o/w2) double emulsion with primary w1/o emulsion droplet size of 0.34 μm and secondary w1/o/w2 emulsion droplet size of 5.5 μm and encapsulation efficiency of betanin of 89 percent. In vitro intestinal lipid digestion was performed on the double emulsion, and during the first two hours, coalescence of the inner water phase droplets was observed, and the sizes of the double emulsion droplets increased quickly because of aggregation. This period also corresponded to gradual release of betanin, with a final release of 35 percent. The double emulsion structure was retained throughout the three-hour experiment. Betanin was also spray dried and incorporated into model juices with different pH and dry matter content. Model juices were stored in the dark at -20, 4, 20–24 or 60 °C (accelerated test) for several months. Betanin degraded quite rapidly in all of the samples and higher temperature and a lower pH accelerated degradation. Stability of betanin was much better in the spray dried powder, with practically no degradation during six months of storage in the dark at 20 to 24 °C and good stability also for six months in the dark at 60 °C with 60 percent retention. Consumer acceptance of model juices colored with spray dried betanin was compared with similar model juices colored with anthocyanins or beet extract. Consumers preferred beet extract and anthocyanin colored model juices over juices colored with spray dried betanin. However, spray dried betanin did not impart any off-odors or off-flavors into the model juices contrary to the beet extract. In conclusion, this thesis describes novel solvent-free extraction and encapsulation processes for lutein and betanin from plant sources. Lutein showed good stability in oil and in o/w emulsions, but slightly inferior in spray dried emulsions. In vitro intestinal lipid digestion showed a good stability of w1/o/w2 double emulsion and quite high retention of betanin during digestion. Consumer acceptance of model juices colored with spray dried betanin was not as good as model juices colored with anthocyanins, but addition of betanin to real berry juice could produce better results with mixture of added betanin and natural berry anthocyanins could produce a more acceptable color. Overall, further studies are needed to obtain natural colorants with good stability for the use in food products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to study techniques to extract and purify of anthocyanins from purple-blue potato. This topic was determined as a master’s thesis and it was done in collaboration with the Food Chemistry and Food Development Department of University of Turku and Department of Chemical and Process Engineering at Lappeenranta University of Technology. At first, purple-blue potatoes were pretreated in four types of boiled, raw, freeze-dried and dried boiled potato for extraction. They were mixed with aqueous acidified ethanol (ethanol:water:acetic acid 40%:53%:7% v/v) for conventional extraction. Boiled potato was selected as a best pretreated potato. Different ethanol concentration and extraction time were examined and the mixture of 80% in 24 h resulted in maximum anthocyanin content (132.23 mg/L). As conventional extraction method of anthocyanins was non-selective, some of impurities such as free sugars might accelerate anthocyanin degradation. Therefore, to obtain anthocyanins in purified form, adsorption as a promising selective method was used to recovery and isolate anthocyanins. It was carried out with six adsorbents. Among those, Amberlite XAD-7HP, a nonionic acrylic ester adsorbent, was found to have the best performance. In an adsorption column, flow rate of 3 mL/min was selected as the loading flow rate among four tested flow rates. Eluent volume and flow rate were 3 BV of aqueous acidified ethanol (75%, v/v) and 1 mL/min for desorption. The quantification of the total anthocyanin contents was performed by pH-differential method using UV-vis spectrophotometer. The resulting anthocyanin solution after purification was almost free from free sugars which were the major cause for degradation of anthocyanins. The average anthocyanin concentration in the purified and concentrated sample was obtained 1752.89 mg/L.