5 resultados para multilevel hierarchical models

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In general, models of ecological systems can be broadly categorized as ’top-down’ or ’bottom-up’ models, based on the hierarchical level that the model processes are formulated on. The structure of a top-down, also known as phenomenological, population model can be interpreted in terms of population characteristics, but it typically lacks an interpretation on a more basic level. In contrast, bottom-up, also known as mechanistic, population models are derived from assumptions and processes on a more basic level, which allows interpretation of the model parameters in terms of individual behavior. Both approaches, phenomenological and mechanistic modelling, can have their advantages and disadvantages in different situations. However, mechanistically derived models might be better at capturing the properties of the system at hand, and thus give more accurate predictions. In particular, when models are used for evolutionary studies, mechanistic models are more appropriate, since natural selection takes place on the individual level, and in mechanistic models the direct connection between model parameters and individual properties has already been established. The purpose of this thesis is twofold. Firstly, a systematical way to derive mechanistic discrete-time population models is presented. The derivation is based on combining explicitly modelled, continuous processes on the individual level within a reproductive period with a discrete-time maturation process between reproductive periods. Secondly, as an example of how evolutionary studies can be carried out in mechanistic models, the evolution of the timing of reproduction is investigated. Thus, these two lines of research, derivation of mechanistic population models and evolutionary studies, are complementary to each other.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systems biology is a new, emerging and rapidly developing, multidisciplinary research field that aims to study biochemical and biological systems from a holistic perspective, with the goal of providing a comprehensive, system- level understanding of cellular behaviour. In this way, it addresses one of the greatest challenges faced by contemporary biology, which is to compre- hend the function of complex biological systems. Systems biology combines various methods that originate from scientific disciplines such as molecu- lar biology, chemistry, engineering sciences, mathematics, computer science and systems theory. Systems biology, unlike “traditional” biology, focuses on high-level concepts such as: network, component, robustness, efficiency, control, regulation, hierarchical design, synchronization, concurrency, and many others. The very terminology of systems biology is “foreign” to “tra- ditional” biology, marks its drastic shift in the research paradigm and it indicates close linkage of systems biology to computer science. One of the basic tools utilized in systems biology is the mathematical modelling of life processes tightly linked to experimental practice. The stud- ies contained in this thesis revolve around a number of challenges commonly encountered in the computational modelling in systems biology. The re- search comprises of the development and application of a broad range of methods originating in the fields of computer science and mathematics for construction and analysis of computational models in systems biology. In particular, the performed research is setup in the context of two biolog- ical phenomena chosen as modelling case studies: 1) the eukaryotic heat shock response and 2) the in vitro self-assembly of intermediate filaments, one of the main constituents of the cytoskeleton. The range of presented approaches spans from heuristic, through numerical and statistical to ana- lytical methods applied in the effort to formally describe and analyse the two biological processes. We notice however, that although applied to cer- tain case studies, the presented methods are not limited to them and can be utilized in the analysis of other biological mechanisms as well as com- plex systems in general. The full range of developed and applied modelling techniques as well as model analysis methodologies constitutes a rich mod- elling framework. Moreover, the presentation of the developed methods, their application to the two case studies and the discussions concerning their potentials and limitations point to the difficulties and challenges one encounters in computational modelling of biological systems. The problems of model identifiability, model comparison, model refinement, model inte- gration and extension, choice of the proper modelling framework and level of abstraction, or the choice of the proper scope of the model run through this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract—This paper discusses existing military capability models and proposes a comprehensive capability meta-model (CCMM) which unites the existing capability models into an integrated and hierarchical whole. The Zachman Framework for Enterprise Architecture is used as a structure for the CCMM. The CCMM takes into account the abstraction level, the primary area of application, stakeholders, intrinsic process, and life cycle considerations of each existing capability model, and shows how the models relate to each other. The validity of the CCMM was verified through a survey of subject matter experts. The results suggest that the CCMM is of practical value to various capability stakeholders in many ways, such as helping to improve communication between the different capability communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organizational creativity is increasingly important for organizations aiming to survive and thrive in complex and unexpectedly changing environments. It is precondition of innovation and a driver of an organization’s performance success. Whereas innovation research increasingly promotes high-involvement and participatory innovation, the models of organizational creativity are still mainly based on an individual-creativity view. Likewise, the definitions of organizational creativity and innovation are somewhat equal, and they are used as interchangeable constructs, while on the other hand they are seen as different constructs. Creativity is seen as generation of novel and useful ideas, whereas innovation is seen as the implementation of these ideas. The research streams of innovation and organizational creativity seem to be advancing somewhat separately, although together they could provide many synergy advantages. Thereby, this study addresses three main research gaps. First, as the knowledge and knowing is being increasingly expertized and distributed in organizations, the conceptualization of organizational creativity needs to face that perspective, rather than relying on the individual-creativity view. Thus, the conceptualization of organizational creativity needs clarification, especially as an organizational-level phenomenon (i.e., creativity by an organization). Second, approaches to consciously build organizational creativity to increase the capacity of an organization to demonstrate novelty in its knowledgeable actions are rare. The current creativity techniques are mainly based on individual-creativity views, and they mainly focus on the occasional problem-solving cases among a limited number of individuals, whereas, the development of collective creativity and creativity by the organization lacks approaches. Third, in terms of organizational creativity as a collective phenomenon, the engagement, contributions, and participation of organizational members into activities of common meaning creation are more important than the individualcreativity skills. Therefore, the development approaches to foster creativity as social, emerging, embodied, and collective creativity are needed to complement the current creativity techniques. To address these gaps, the study takes a multiparadigm perspective to face the following three objectives. The first objective of this study is to clarify and extend the conceptualization of organizational creativity. The second is to study the development of organizational creativity. The third is to explore how an improvisational theater based approach fosters organizational creativity. The study consists of two parts comprising the introductory part (part I) and six publications (part II). Each publication addresses the research questions of the thesis through detailed subquestions. The study makes three main contributions to the research of organizational creativity. First, it contributes toward the conceptualization of organizational creativity by extending the current view of organizational creativity. This study views organizational creativity as a multilevel construct constituting both of individual and collective (group and organizational) creativity. In contrast to current views of organizational creativity, this study bases on organizational (collective) knowledge that is based on and demonstrated through the knowledgeable actions of an organization as a whole. The study defines organizational creativity as an overall ability of an organization to demonstrate novelty in its knowledgeable actions (through what it does and how it does what it does).Second, this study contributes toward the development of organizational creativity as multi-level phenomena, introducing developmental approaches that face two or more of these levels simultaneously. More specifically, the study presents the cross-level approaches to building organizational creativity, by using an approach based in improvisational theater and considering assessment of organizational renewal capability. Third, the study contributes on development of organizational creativity using an improvisational theater based approach as twofold meaning. First, it fosters individual and collective creativity simultaneously and builds space for creativity to occur. Second, it models collective and distributed creativity processes, thereby, contributing to the conceptualization of organizational creativity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric energy demand has been growing constantly as the global population increases. To avoid electric energy shortage, renewable energy sources and energy conservation are emphasized all over the world. The role of power electronics in energy saving and development of renewable energy systems is significant. Power electronics is applied in wind, solar, fuel cell, and micro turbine energy systems for the energy conversion and control. The use of power electronics introduces an energy saving potential in such applications as motors, lighting, home appliances, and consumer electronics. Despite the advantages of power converters, their penetration into the market requires that they have a set of characteristics such as high reliability and power density, cost effectiveness, and low weight, which are dictated by the emerging applications. In association with the increasing requirements, the design of the power converter is becoming more complicated, and thus, a multidisciplinary approach to the modelling of the converter is required. In this doctoral dissertation, methods and models are developed for the design of a multilevel power converter and the analysis of the related electromagnetic, thermal, and reliability issues. The focus is on the design of the main circuit. The electromagnetic model of the laminated busbar system and the IGBT modules is established with the aim of minimizing the stray inductance of the commutation loops that degrade the converter power capability. The circular busbar system is proposed to achieve equal current sharing among parallel-connected devices and implemented in the non-destructive test set-up. In addition to the electromagnetic model, a thermal model of the laminated busbar system is developed based on a lumped parameter thermal model. The temperature and temperature-dependent power losses of the busbars are estimated by the proposed algorithm. The Joule losses produced by non-sinusoidal currents flowing through the busbars in the converter are estimated taking into account the skin and proximity effects, which have a strong influence on the AC resistance of the busbars. The lifetime estimation algorithm was implemented to investigate the influence of the cooling solution on the reliability of the IGBT modules. As efficient cooling solutions have a low thermal inertia, they cause excessive temperature cycling of the IGBTs. Thus, a reliability analysis is required when selecting the cooling solutions for a particular application. The control of the cooling solution based on the use of a heat flux sensor is proposed to reduce the amplitude of the temperature cycles. The developed methods and models are verified experimentally by a laboratory prototype.