11 resultados para multi-objective genetic algorithms
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The objective of this thesis work is to develop and study the Differential Evolution Algorithm for multi-objective optimization with constraints. Differential Evolution is an evolutionary algorithm that has gained in popularity because of its simplicity and good observed performance. Multi-objective evolutionary algorithms have become popular since they are able to produce a set of compromise solutions during the search process to approximate the Pareto-optimal front. The starting point for this thesis was an idea how Differential Evolution, with simple changes, could be extended for optimization with multiple constraints and objectives. This approach is implemented, experimentally studied, and further developed in the work. Development and study concentrates on the multi-objective optimization aspect. The main outcomes of the work are versions of a method called Generalized Differential Evolution. The versions aim to improve the performance of the method in multi-objective optimization. A diversity preservation technique that is effective and efficient compared to previous diversity preservation techniques is developed. The thesis also studies the influence of control parameters of Differential Evolution in multi-objective optimization. Proposals for initial control parameter value selection are given. Overall, the work contributes to the diversity preservation of solutions in multi-objective optimization.
Resumo:
An alternative relation to Pareto-dominance relation is proposed. The new relation is based on ranking a set of solutions according to each separate objective and an aggregation function to calculate a scalar fitness value for each solution. The relation is called as ranking-dominance and it tries to tackle the curse of dimensionality commonly observedin evolutionary multi-objective optimization. Ranking-dominance can beused to sort a set of solutions even for a large number of objectives when Pareto-dominance relation cannot distinguish solutions from one another anymore. This permits search to advance even with a large number of objectives. It is also shown that ranking-dominance does not violate Pareto-dominance. Results indicate that selection based on ranking-dominance is able to advance search towards the Pareto-front in some cases, where selection based on Pareto-dominance stagnates. However, in some cases it is also possible that search does not proceed into direction of Pareto-front because the ranking-dominance relation permits deterioration of individual objectives. Results also show that when the number of objectives increases, selection based on just Pareto-dominance without diversity maintenance is able to advance search better than with diversity maintenance. Therefore, diversity maintenance is connive at the curse of dimensionality.
Resumo:
The changing business environment demands that chemical industrial processes be designed such that they enable the attainment of multi-objective requirements and the enhancement of innovativedesign activities. The requirements and key issues for conceptual process synthesis have changed and are no longer those of conventional process design; there is an increased emphasis on innovative research to develop new concepts, novel techniques and processes. A central issue, how to enhance the creativity of the design process, requires further research into methodologies. The thesis presentsa conflict-based methodology for conceptual process synthesis. The motivation of the work is to support decision-making in design and synthesis and to enhance the creativity of design activities. It deals with the multi-objective requirements and combinatorially complex nature of process synthesis. The work is carriedout based on a new concept and design paradigm adapted from Theory of InventiveProblem Solving methodology (TRIZ). TRIZ is claimed to be a `systematic creativity' framework thanks to its knowledge based and evolutionary-directed nature. The conflict concept, when applied to process synthesis, throws new lights on design problems and activities. The conflict model is proposed as a way of describing design problems and handling design information. The design tasks are represented as groups of conflicts and conflict table is built as the design tool. The general design paradigm is formulated to handle conflicts in both the early and detailed design stages. The methodology developed reflects the conflict nature of process design and synthesis. The method is implemented and verified through case studies of distillation system design, reactor/separator network design and waste minimization. Handling the various levels of conflicts evolve possible design alternatives in a systematic procedure which consists of establishing an efficient and compact solution space for the detailed design stage. The approach also provides the information to bridge the gap between the application of qualitative knowledge in the early stage and quantitative techniques in the detailed design stage. Enhancement of creativity is realized through the better understanding of the design problems gained from the conflict concept and in the improvement in engineering design practice via the systematic nature of the approach.
Resumo:
Työssä esitetään geneettisten algoritmien käyttöön perustuva hissiohjausjärjestelmä, jossa ohjauspaatosten tekemisessä hyödynnetään tarkkoja matkustajatietoja. Tämä hissiohjausjärjestelmä soveltuu käytettäväksi muun muassa kohde-allokointiin perus-tuvassa hissijärjestelmässä, jossa matkustajat antavat hissikutsun yhteydessä kohde-kerrostietonsa. Esitetty ohjausjärjestelmä soveltuu käytettäväksi ulkokutsun välittömään tai jatkuvaan allokointiin perustuvassa hissijärjestelmässä. Työn kirjallisessa osuudessa esitetään parannuksia aiemmin esitettyihin hissiohjausjärjestelmiin ja käydään läpi erilaisia kohde-allokointiin perustuvia hissijärjestelmiä. Työssä kuvataan uusi matkustaja-ohjaustapa, joka vähentää matkustajan tekemän hissikutsun välittömään palveluun liittyviä hissiohjausongelmia. Tarkkoja matkustajatietoja hyödyntämällä hissijärjestelmä kykenee sekä tarjoamaan matkustajille yksilöllistä palvelua että kuljettamaan matkustajia tehokkaasti.
Resumo:
Tämä diplomityö on tehty Andritz Oy:lle Washers & Filters tuoteryhmään. Työ on osa pienten sellupesureiden tuotekehitysprojektia. Tavoitteena on vertailla olemassa olevaa tuotekehitysaineistoa ja tuoda esiin suunnitteluprosessi, jolla DD – sellupesurin osien rakenteita voidaan järjestelmällisesti kehittää. Diplomityössä tutkittuja osia ovat tiiviste–elementti, päätypalkki ja rumpu. Tiiviste–elementtejä vertailtiin olemassa olevan tuotekehitysaineiston osalta, sekä tutkittiin geneettisiin algoritmeihin pohjautuvan topologian optimoinnin soveltuvuutta tiiviste-elementin suunnitteluun. Päätypalkin ja rummun optimaaliset geometriat selvitettiin geneettisiä algoritmejä hyödyntävällä topologisella optimoinnilla. Optimaalisten topologioiden perusteella suunniteltiin valmistettavissa olevat rakenteet joiden ainevahvuudet määrättiin alustavasti vakion variointiin perustuvalla optimoinnilla. Tällä menettelyllä saatiin päätypalkista ja rummusta aikaiseksi aikaisempaa kevyemmät rakenteet. Topologian optimointi huomattiin soveltuvan rakenteisiin, joiden kuormitus- ja kiinnitystiedot ovat yksiselitteisesti määrätyt.
Resumo:
This master’s thesis is focused on the active magnetic bearings control, specifically the robust control. As carrying out of such kind of control used mixed H2/Hinf controller. So the goal of this work is to design it using Robust Control Toolbox™ in MATLAB and compare it performance and robustness with Hinf robust controller characteristics. But only one degree-of-freedom controller considered.
Resumo:
In this work mathematical programming models for structural and operational optimisation of energy systems are developed and applied to a selection of energy technology problems. The studied cases are taken from industrial processes and from large regional energy distribution systems. The models are based on Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MINLP) and on a hybrid approach of a combination of Non-Linear Programming (NLP) and Genetic Algorithms (GA). The optimisation of the structure and operation of energy systems in urban regions is treated in the work. Firstly, distributed energy systems (DES) with different energy conversion units and annual variations of consumer heating and electricity demands are considered. Secondly, district cooling systems (DCS) with cooling demands for a large number of consumers are studied, with respect to a long term planning perspective regarding to given predictions of the consumer cooling demand development in a region. The work comprises also the development of applications for heat recovery systems (HRS), where paper machine dryer section HRS is taken as an illustrative example. The heat sources in these systems are moist air streams. Models are developed for different types of equipment price functions. The approach is based on partitioning of the overall temperature range of the system into a number of temperature intervals in order to take into account the strong nonlinearities due to condensation in the heat recovery exchangers. The influence of parameter variations on the solutions of heat recovery systems is analysed firstly by varying cost factors and secondly by varying process parameters. Point-optimal solutions by a fixed parameter approach are compared to robust solutions with given parameter variation ranges. In the work enhanced utilisation of excess heat in heat recovery systems with impingement drying, electricity generation with low grade excess heat and the use of absorption heat transformers to elevate a stream temperature above the excess heat temperature are also studied.