3 resultados para missense mutations

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neutral alpha-mannosidase and lysosomal MAN2B1 alpha-mannosidase belong to glycoside hydrolase family 38, which contains essential enzymes required for the modification and catabolism of asparagine-linked glycans on proteins. MAN2B1 catalyses lysosomal glycan degradation, while neutral α-mannosidase is most likely involved in the catabolism of cytosolic free oligosaccharides. These mannose containing saccharides are generated during glycosylation or released from misfolded glycoproteins, which are detected by quality control in the endoplasmic reticulum. To characterise the biological function of human neutral α-mannosidase, I cloned the alpha-mannosidase cDNA and recombinantly expressed the enzyme. The purified enzyme trimmed the putative natural substrate Man9GlcNAc to Man5GlcNAc, whereas the reducing end GlcNAc2 limited trimming to Man8GlcNAc2. Neutral α-mannosidase showed highest enzyme activity at neutral pH and was activated by the cations Fe2+, Co2+ and Mn2+, Cu2+ in turn had a strong inhibitory effect on alpha-mannosidase activity. Analysis of its intracellular localisation revealed that neutral alpha-mannosidase is cytosolic and colocalises with proteasomes. Further work showed that the overexpression of neutral alpha-mannosidase affected the cytosolic free oligosaccharide content and led to enhanced endoplasmic reticulum associated degradation and underglycosylation of secreted proteins. The second part of the study focused on MAN2B1 and the inherited lysosomal storage disorder α-mannosidosis. In this disorder, deficient MAN2B1 activity is associated with mutations in the MAN2B1 gene. The thesis reports the molecular consequences of 35 alpha-mannosidosis associated mutations, including 29 novel missense mutations. According to experimental analyses, the mutations fall into four groups: Mutations, which prevent transport to lysosomes are accompanied with a lack of proteolytic processing of the enzyme (groups 1 and 3). Although the rest of the mutations (groups 2 and 4) allow transport to lysosomes, the mutated proteins are less efficiently processed to their mature form than is wild type MAN2B1. Analysis of the effect of the mutations on the model structure of human lysosomal alpha-mannosidase provides insights on their structural consequences. Mutations, which affect amino acids important for folding (prolines, glycines, cysteines) or domain interface interactions (arginines), arrest the enzyme in the endoplasmic reticulum. Surface mutations and changes, which do not drastically alter residue volume, are tolerated better. Descriptions of the mutations and clinical data are compiled in an α-mannosidosis database, which will be available for the scientific community. This thesis provides a detailed insight into two ubiquitous human alpha-mannosidases. It demonstrates that neutral alpha-mannosidase is involved in the degradation of cytosolic oligosaccharides and suggests that the regulation of this α-mannosidase is important for maintaining the cellular homeostasis of N-glycosylation and glycan degradation. The study on alpha-mannosidosis associated mutations identifies multiple mechanisms for how these mutations are detrimental for MAN2B1 activity. The α-mannosidosis database will benefit both clinicians and scientific research on lysosomal alpha‑mannosidosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid identification and resistance determination of pathogens in clinical specimens is vital for accurate treatment and monitoring of infectious diseases. Antimicrobial drug resistance is increasing globally and healthcare settings are facing this cost-intensive and even life-threatening problem. The incidence of resistant pathogens in Finland has remained relatively steady and manageable at least for the time being. DNA sequencing is the gold standard method for genotyping, mutation analysis, and identification of bacteria. Due to significant cost decrease in recent years, this technique is available to many research and clinical laboratories. Pyrosequencing technique, a rapid real-time DNA sequencing method especially suitable for analyzing fairly short stretches of DNA, was used in this study. Due to its robustness and versatility, pyrosequencing was applied in this study for identification of streptococci and detection of certain mutations causing antimicrobial resistance in different bacteria. Certain streptococcal species such as S. pneumoniae and S. pyogenes are significantly important clinical pathogens. S. pneumoniae causes e.g. pneumonia and otitis media and is one of the most important community-acquired pathogens. S. pyogenes, also known as group A streptococcus, causes e.g. angina and erysipelas. In contrast, the socalled alpha-haemolytic streptococci, such as S. mitis and S. oralis, belong to the normal microbiota, which are regarded to be non-pathogenic and are nearly impossible to identify by phenotypic methods. In this thesis, a pyrosequencing method was developed for identification of streptococcal species based on the 16S rRNA sequences. Almost all streptococcal species could be differentiated from one another by the developed method, including S. pneumoniae from its close relatives S. mitis and S. oralis . New resistance genes and their variants are constantly discovered and reported. In this study, new methods for detecting certain mutations causing macrolide resistance or extended spectrum beta-lactamase (ESBL) phenotype were developed. These resistance detection approaches are not only suitable for surveillance of mechanisms causing antimicrobial resistance but also for routine analysis of clinical samples particularly in epidemic settings. In conclusion, pyrosequencing was found to be an accurate, versatile, cost-effective, and rapid DNA sequencing method that is especially suitable for mutation analysis of short DNA fragments and identification of certain bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ErbB receptor tyrosine kinases, epidermal growth factor receptor (EGFR, also known as ErbB1), ErbB2 (HER2 or NEU), ErbB3 (HER3), and ErbB4 (HER4), transduce signals borne by extracellular ligands into central cellular responses such as proliferation, survival, differentiation, and apoptosis. Mutations in ERBB genes are frequently detected in human malignant diseases of epithelial and neural origin, making ErbB receptors important drug targets. Targeting EGFR and ErbB2 has been successful in eg. lung and breast cancer, respectively, and mutations in these genes can be used to select patients that are responsive to the targeted treatment. Although somatic ERBB4 mutations have been found in many high-incidence cancers such as melanoma, lung cancer, and colorectal cancer and germ-line ERBB4 mutations have been linked to neuronal disorders and cancer, ErbB4 has generally been neglected as a potential drug target. Thus, the consequences of ERBB4 mutations on ErbB4 biology are largely unknown. This thesis aimed to elucidate the functional consequences and assess the clinical significance of somatic and germ-line ERBB4 mutations in the context of cancer and amyotrophic lateral sclerosis. The results of this study indicated that cancer-associated ERBB4 mutations can promote aberrant ErbB4 function by activating the receptor or inducing qualitative changes in ErbB4 signaling. ERBB4 mutations increased survival or decreased differentiation in vitro, suggesting that ERBB4 mutations can be oncogenic. Importantly, the potentially oncogenic mutations were located in various subdomains in ErbB4, possibly providing explanation for the characteristic scattered pattern of mutations in ERBB4. This study also demonstrated that hereditary variation in ERBB4 gene can have a significant effect on the prognosis of breast cancer. In addition, it was shown that hereditary or de novo germ-line ERBB4 mutations that predispose to amyotrophic lateral sclerosis inhibit ErbB4 activity. Together, these results suggest that ErbB4 should be considered as a novel drug target in cancer and amyotrophic lateral sclerosis.