32 resultados para microgravity fluid physics
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Selostus: Sikiön DNA:n tunnistaminen naudan sikiövedestä polymeraasiketjureaktion avulla
Resumo:
Diplomityön tavoitteena oli tarkastella numeerisen virtauslaskennan avulla virtaukseen liittyviä ilmiöitä ja kaasun dispersiota. Diplomityön sisältö on jaettu viiteen osaan; johdantoon, teoriaan, katsaukseen virtauksen mallinnukseen huokoisessa materiaalissa liittyviin tutkimusselvityksiin, numeeriseen mallinnukseen sekä tulosten esittämiseen ja johtopäätöksiin. Diplomityön alussa kiinnitettiin huomiota erilaisiin kokeellisiin, numeerisiin ja teoreettisiin mallinnusmenetelmiin, joilla voidaan mallintaa virtausta huokoisessa materiaalissa. Kirjallisuusosassa tehtiin katsaus aikaisemmin julkaistuihin puoliempiirisiin ja empiirisiin tutkimusselvityksiin, jotka liittyvät huokoisen materiaalin aiheuttamaan painehäviöön. Numeerisessa virtauslaskenta osassa rakennettiin ja esitettiin huokoista materiaalia kuvaavat numeeriset mallit käyttäen kaupallista FLUENT -ohjelmistoa. Työn lopussa arvioitiin teorian, numeerisen virtauslaskennan ja kokeellisten tutkimusselvitysten tuloksia. Kolmiulotteisen huokoisen materiaalinnumeerisessa mallinnuksesta saadut tulokset vaikuttivat lupaavilta. Näiden tulosten perusteella tehtiin suosituksia ajatellen tulevaa virtauksen mallinnusta huokoisessa materiaalissa. Osa tässä diplomityössä esitetyistä tuloksista tullaan esittämään 55. Kanadan Kemiantekniikan konferenssissa Torontossa 1619 Lokakuussa 2005. ASME :n kansainvälisessä tekniikan alan julkaisussa. Työ on hyväksytty esitettäväksi esitettäväksi laskennallisen virtausmekaniikan (CFD) aihealueessa 'Peruskäsitteet'. Lisäksi työn yksityiskohtaiset tulokset tullaan lähettämään myös CES:n julkaisuun.
Resumo:
Micronization techniques based on supercritical fluids (SCFs) are promising for the production of particles with controlled size and distribution. The interest of the pharmaceutical field in the development of SCF techniques is increasing due to the need for clean processes, reduced consumption of energy, and to their several possible applications. The food field is still far from the application of SCF micronization techniques, but there is increasing interest mainly for the processing of products with high added value. The aim of this study is to use SCF micronization techniques for the production of particles of pharmaceuticals and food ingredients with controlled particle size and morphology, and to look at their production on semi-industrial scale. The results obtained are also used to understand the processes from the perspective of broader application within the pharmaceutical and food industries. Certain pharmaceuticals, a biopolymer and a food ingredient have been tested using supercritical antisolvent micronization (SAS) or supercritical assisted atomization (SAA) techniques. The reproducibility of the SAS technique has been studied using physically different apparatuses and on both laboratory and semi-industrial scale. Moreover, a comparison between semi-continuous and batch mode has been performed. The behaviour of the system during the SAS process has been observed using a windowed precipitation vessel. The micronized powders have been characterized by particle size and distribution, morphology and crystallinity. Several analyses have been performed to verify if the SCF process modified the structure of the compound or caused degradation or contamination of the product. The different powder morphologies obtained have been linked to the position of the process operating point with respect to the vapour-liquid equilibrium (VLE) of the systems studied, that is, mainly to the position of the mixture critical point (MCP) of the mixture. Spherical micro, submicro- and nanoparticles, expanded microparticles (balloons) and crystals were obtained by SAS. The obtained particles were amorphous or with different degrees of crystallinity and, in some cases, had different pseudo-polymorphic or polymorphic forms. A compound that could not be processed using SAS was micronized by SAA, and amorphous particles were obtained, stable in vials at room temperature. The SCF micronization techniques studied proved to be effective and versatile for the production of particles for several uses. Furthermore, the findings of this study and the acquired knowledge of the proposed processes can allow a more conscious application of SCF techniques to obtain products with the desired characteristics and enable the use of their principles for broader applications.
Resumo:
Fluid mixing in mechanically agitated tanks is one of the major unit operations in many industries. Bubbly flows have been of interest among researchers in physics, medicine, chemistry and technology over the centuries. The aim of this thesis is to use advanced numerical methods for simulating microbubble in an aerated mixing tank. Main components of the mixing tank are a cylindrical vessel, a rotating Rushton turbine and the air nozzle. The objective of Computational Fluid Dynamics (CFD) is to predict fluid flow, heat transfer, mass transfer and chemical reactions. The CFD simulations of a turbulent bubbly flow are carried out in a cylindrical mixing tank using large eddy simulation (LES) and volume of fluid (VOF) method. The Rushton turbine induced flow is modeled by using a sliding mesh method. Numerical results are used to describe the bubbly flows in highly complex liquid flow. Some of the experimental works related to turbulent bubbly flow in a mixing tank are briefly reported. Numerical simulations are needed to complete and interpret the results of the experimental work. Information given by numerical simulations has a major role in designing and scaling-up mixing tanks. The results of this work have been reported in the following scientific articles: ·Honkanen M., Koohestany A., Hatunen T., Saarenrinne P., Zamankhan P., Large eddy simulations and PIV experiments of a two-phase air-water mixer, in Proceedings of ASME Fluids Engineering Summer Conference (2005). ·Honkanen M., Koohestany A., Hatunen T., Saarenrinne P., Zamankhan P., Dynamical States of Bubbling in an Aerated Stirring Tank, submitted to J. Computational Physics.
Resumo:
Previous studies have demonstrated that clinical pulpal pain can induce the expression of pro-inflammatory neuropeptides in the adjacent gingival crevice fluid (GCF). Vasoactive agents such as substance P (SP) are known to contribute to the inflammatory type of pain and are associated with increased blood flow. More recent animal studies have shown that application of capsaicin on alveolar mucosa provokes pain and neurogenic vasodilatation in the adjacent gingiva. Pain-associated inflammatory reactions may initiate expression of several pro- and anti-inflammatory mediators. Collagenase-2 (MMP-8) has been considered to be the major destructive protease, especially in the periodontitis-affected gingival crevice fluid (GCF). MMP-8 originates mostly from neutrophil leukocytes, the first line of defence cells that exist abundantly in GCF, especially in inflammation. With this background, we wished to clarify the spatial extensions and differences between tooth-pain stimulation and capsaicin-induced neurogenic vasodilatation in human gingiva. Experiments were carried out to study whether tooth stimulation and capsaicin stimulation of alveolar mucosa would induce changes in GCF MMP-8 levels and whether tooth stimulation would release neuropeptide SP in GCF. The experiments were carried out on healthy human volunteers. During the experiments, moderate and high intensity painful tooth stimulation was performed by a constant current tooth stimulator. Moderate tooth stimulation activates A-delta fibres, while high stimulation also activates C-fibres. Painful stimulation of the gingiva was achieved by topical application of capsaicin-moistened filter paper on the mucosal surface. Capsaicin is known to activate selectively nociceptive C-fibres of stimulated tissue. Pain-evoked vasoactive changes in gingivomucosal tissues were mapped by laser Doppler imaging (LDI), which is a sophisticated and non-invasive method for studying e.g. spatial and temporal characteristics of pain- and inflammation-evoked blood flow changes in gingivomucosal tissues. Pain-evoked release of MMP-8 in GCF samples was studied by immunofluorometric assay (IFMA) and Western immunoblotting. The SP levels in GCF were analysed by Enzyme immunoassay (EIA). During the experiments, subjective stimulus-evoked pain responses were determined by a visual analogue pain scale. Unilateral stimulation of alveolar mucosa and attached gingiva by capsaicin evoked a distinct neurogenic vasodilatation in the ipsilateral gingiva, which attenuated rapidly at the midline. Capsaicin stimulation of alveolar mucosa provoked clear inflammatory reactions. In contrast to capsaicin stimuli, tooth stimulation produced symmetrical vasodilatations bilaterally in the gingiva. The ipsilateral responses were significantly smaller during tooth stimulation than during capsaicin stimuli. The current finding – that tooth stimulation evokes bilateral vasodilatation while capsaicin stimulation of the gingiva mainly produces unilateral vasodilatation – emphasises the usefulness of LDI in clarifying spatial features of neurogenic vasoactive changes in the intra-oral tissues. Capsaicin stimulation of the alveolar mucosa induced significant elevations in MMP-8 levels and activation in GCF of the adjacent teeth. During the experiments, no marked changes occurred in MMP-8 levels in the GCF of distantly located teeth. Painful stimulation of the upper incisor provoked elevations in GCF MMP-8 and SP levels of the stimulated tooth. The GCF MMP-8 and SP levels of the non-stimulated teeth were not changed. These results suggest that capsaicin-induced inflammatory reactions in gingivomucosal tissues do not cross the midline in the anterior maxilla. The enhanced reaction found during stimulation of alveolar mucosa indicates that alveolar mucosa is more sensitive to chemical irritants than the attached gingiva. Analysis of these data suggests that capsaicin-evoked neurogenic inflammation in the gingiva can trigger the expression and activation of MMP-8 in GCF of the adjacent teeth. In this study, it is concluded that experimental tooth pain at C-fibre intensity can induce local elevations in MMP-8 and SP levels in GCF. Depending on the role of MMP-8 in inflammation, in addition to surrogated tissue destruction, the elevated MMP-8 in GCF may also reflect accelerated local defensive and anti-inflammatory reactions.
Resumo:
The aim of this work is to study flow properties at T-junction of pipe, pressure loss suffered by the flow after passing through T-junction and to study reliability of the classical engineering formulas used to find head loss for T-junction of pipes. In this we have compared our results with CFD software packages with classical formula and made an attempt to determine accuracy of the classical formulas. In this work we have studies head loss in T-junction of pipes with various inlet velocities, head loss in T-junction of pipes when the angle of the junction is slightly different from 90 degrees and T-junction with different area of cross-section of the main pipe and branch pipe. In this work we have simulated the flow at T-junction of pipe with FLUENT and Comsol Multiphysics and observed flow properties inside the T-junction and studied the head loss suffered by fluid flow after passing through the junction. We have also compared pressure (head) losses obtained by classical formulas by A. Vazsonyi and Andrew Gardel and formulas obtained by assuming T-junction as combination of other pipe components and observations obtained from software experiments. One of the purposes of this study is also to study change in pressure loss with change in angle of T-junction. Using software we can have better view of flow inside the junction and study turbulence, kinetic energy, pressure loss etc. Such simulations save a lot of time and can be performed without actually doing the experiment. There were no real life experiments made, the results obtained completely rely on accuracy of software and numerical methods used.
Resumo:
There is an increasing reliance on computers to solve complex engineering problems. This is because computers, in addition to supporting the development and implementation of adequate and clear models, can especially minimize the financial support required. The ability of computers to perform complex calculations at high speed has enabled the creation of highly complex systems to model real-world phenomena. The complexity of the fluid dynamics problem makes it difficult or impossible to solve equations of an object in a flow exactly. Approximate solutions can be obtained by construction and measurement of prototypes placed in a flow, or by use of a numerical simulation. Since usage of prototypes can be prohibitively time-consuming and expensive, many have turned to simulations to provide insight during the engineering process. In this case the simulation setup and parameters can be altered much more easily than one could with a real-world experiment. The objective of this research work is to develop numerical models for different suspensions (fiber suspensions, blood flow through microvessels and branching geometries, and magnetic fluids), and also fluid flow through porous media. The models will have merit as a scientific tool and will also have practical application in industries. Most of the numerical simulations were done by the commercial software, Fluent, and user defined functions were added to apply a multiscale method and magnetic field. The results from simulation of fiber suspension can elucidate the physics behind the break up of a fiber floc, opening the possibility for developing a meaningful numerical model of the fiber flow. The simulation of blood movement from an arteriole through a venule via a capillary showed that the model based on VOF can successfully predict the deformation and flow of RBCs in an arteriole. Furthermore, the result corresponds to the experimental observation illustrates that the RBC is deformed during the movement. The concluding remarks presented, provide a correct methodology and a mathematical and numerical framework for the simulation of blood flows in branching. Analysis of ferrofluids simulations indicate that the magnetic Soret effect can be even higher than the conventional one and its strength depends on the strength of magnetic field, confirmed experimentally by Völker and Odenbach. It was also shown that when a magnetic field is perpendicular to the temperature gradient, there will be additional increase in the heat transfer compared to the cases where the magnetic field is parallel to the temperature gradient. In addition, the statistical evaluation (Taguchi technique) on magnetic fluids showed that the temperature and initial concentration of the magnetic phase exert the maximum and minimum contribution to the thermodiffusion, respectively. In the simulation of flow through porous media, dimensionless pressure drop was studied at different Reynolds numbers, based on pore permeability and interstitial fluid velocity. The obtained results agreed well with the correlation of Macdonald et al. (1979) for the range of actual flow Reynolds studied. Furthermore, calculated results for the dispersion coefficients in the cylinder geometry were found to be in agreement with those of Seymour and Callaghan.
Resumo:
The objective of the work is to study fluid flow behavior through a pinch valve and to estimate the flow coefficient (KV ) at different opening positions of the valve. The flow inside a compressed valve is more complex than in a straight pipe, and it is one of main topics of interest for engineers in process industry. In the present work, we have numerically simulated compressed valve flow at different opening positions. In order to simulate the flow through pinch valve, several models of the elastomeric valve tube (pinch valve tube) at different opening positions were constructed in 2D-axisymmetric and 3D geometries. The numerical simulations were performed with the CFD packages; ANSYS FLUENT and ANSYS CFX by using parallel computing. The distributions of static pressure, velocity and turbulent kinetic energy have been studied at different opening positions of the valve in both 2D-axisymmetric and 3D experiments. The flow coefficient (KV ) values have been measured at different valve openings and are compared between 2D-axisymmetric and 3D simulation results.
Resumo:
The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.
Resumo:
For decades researchers have been trying to build models that would help understand price performance in financial markets and, therefore, to be able to forecast future prices. However, any econometric approaches have notoriously failed in predicting extreme events in markets. At the end of 20th century, market specialists started to admit that the reasons for economy meltdowns may originate as much in rational actions of traders as in human psychology. The latter forces have been described as trading biases, also known as animal spirits. This study aims at expressing in mathematical form some of the basic trading biases as well as the idea of market momentum and, therefore, reconstructing the dynamics of prices in financial markets. It is proposed through a novel family of models originating in population and fluid dynamics, applied to an electricity spot price time series. The main goal of this work is to investigate via numerical solutions how well theequations succeed in reproducing the real market time series properties, especially those that seemingly contradict standard assumptions of neoclassical economic theory, in particular the Efficient Market Hypothesis. The results show that the proposed model is able to generate price realizations that closely reproduce the behaviour and statistics of the original electricity spot price. That is achieved in all price levels, from small and medium-range variations to price spikes. The latter were generated from price dynamics and market momentum, without superimposing jump processes in the model. In the light of the presented results, it seems that the latest assumptions about human psychology and market momentum ruling market dynamics may be true. Therefore, other commodity markets should be analyzed with this model as well.