4 resultados para metal coordination-chelation interaction

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over 70% of the total costs of an end product are consequences of decisions that are made during the design process. A search for optimal cross-sections will often have only a marginal effect on the amount of material used if the geometry of a structure is fixed and if the cross-sectional characteristics of its elements are property designed by conventional methods. In recent years, optimalgeometry has become a central area of research in the automated design of structures. It is generally accepted that no single optimisation algorithm is suitable for all engineering design problems. An appropriate algorithm, therefore, mustbe selected individually for each optimisation situation. Modelling is the mosttime consuming phase in the optimisation of steel and metal structures. In thisresearch, the goal was to develop a method and computer program, which reduces the modelling and optimisation time for structural design. The program needed anoptimisation algorithm that is suitable for various engineering design problems. Because Finite Element modelling is commonly used in the design of steel and metal structures, the interaction between a finite element tool and optimisation tool needed a practical solution. The developed method and computer programs were tested with standard optimisation tests and practical design optimisation cases. Three generations of computer programs are developed. The programs combine anoptimisation problem modelling tool and FE-modelling program using three alternate methdos. The modelling and optimisation was demonstrated in the design of a new boom construction and steel structures of flat and ridge roofs. This thesis demonstrates that the most time consuming modelling time is significantly reduced. Modelling errors are reduced and the results are more reliable. A new selection rule for the evolution algorithm, which eliminates the need for constraint weight factors is tested with optimisation cases of the steel structures that include hundreds of constraints. It is seen that the tested algorithm can be used nearly as a black box without parameter settings and penalty factors of the constraints.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metal-ion-mediated base-pairing of nucleic acids has attracted considerable attention during the past decade, since it offers means to expand the genetic code by artificial base-pairs, to create predesigned molecular architecture by metal-ion-mediated inter- or intra-strand cross-links, or to convert double stranded DNA to a nano-scale wire. Such applications largely depend on the presence of a modified nucleobase in both strands engaged in the duplex formation. Hybridization of metal-ion-binding oligonucleotide analogs with natural nucleic acid sequences has received much less attention in spite of obvious applications. While the natural oligonucleotides hybridize with high selectivity, their affinity for complementary sequences is inadequate for a number of applications. In the case of DNA, for example, more than 10 consecutive Watson-Crick base pairs are required for a stable duplex at room temperature, making targeting of sequences shorter than this challenging. For example, many types of cancer exhibit distinctive profiles of oncogenic miRNA, the diagnostics of which is, however, difficult owing to the presence of only short single stranded loop structures. Metallo-oligonucleotides, with their superior affinity towards their natural complements, would offer a way to overcome the low stability of short duplexes. In this study a number of metal-ion-binding surrogate nucleosides were prepared and their interaction with nucleoside 5´-monophosphates (NMPs) has been investigated by 1H NMR spectroscopy. To find metal ion complexes that could discriminate between natural nucleobases upon double helix formation, glycol nucleic acid (GNA) sequences carrying a PdII ion with vacant coordination sites at a predetermined position were synthesized and their affinity to complementary as well as mismatched counterparts quantified by UV-melting measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zinc selenide is a prospective material for optoelectronics. The fabrication of ZnSe­based light-emitting diodes is hindered by complexity of p-type doping of the component materials. The interaction between native and impurity defects, the tendency of doping impurity to form associative centres with native defects and the tendency to self-compensation are the main factors impeding effective control of the value and type of conductivity. The thesis is devoted to the study of the processes of interaction between native and impurity defects in zinc selenide. It is established that the Au impurity has the most prominent amphoteric properties in ZnSe among Cu, Ag and Au impurities, as it forms a great number of both Au; donors and Auz„ acceptors. Electrical measurements show that Ag and Au ions introduced into vacant sites of the Zn sublattice form simple single-charged Agz„+ and Auzn+ states with d1° electron configuration, while Cu ions can form both single-charged Cuz„ (d1) and double-charged Cuzr`+ (d`o) centres. Amphoteric properties of Ag and Au transition metals stimulated by time are found for the first time from both electrical and luminescent measurements. A model that explains the changes in electrical and luminescent parameters by displacement of Ag ions into interstitial sites due to lattice deformation forces is proposed. Formation of an Ag;-donor impurity band in ZnSe samples doped with Ag and stored at room temperature is also studied. Thus, the properties of the doped samples are modified due to large lattice relaxation during aging. This fact should be taken into account in optoelectronic applications of doped ZnSe and related compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work emission, optical, electrical and magnetic properties of the d- and f- elements doped zinc selenide crystals were investigated within a wide temperature range. Doping was performed in various technological processes: during the growth by chemical vapor transport method; by thermal diffusion from the Bi or Zn melt. Concentration of the doping impurity in the crystals was controlled by amount of the dopant in the source material or by its concentration in the doping media. Special interest in the work was paid to the influence of the different concentrations of Cr and Yb impurities on ZnSe crystals’ properties, correlations between observed effects and similarities with the Ni, Mn and Gd dopants are analysed. Possibility of formation of the excitons bound to the doping d-ions was shown. In contrast to this, it was observed that f-elements do not bound excitons, but prevent formation of excitons bound to some uncontrolled impurities. A mechanism of Cr doping impurity interaction with background impurities and zinc selenide structural defects was proposed based on experimental data. An assumption about resonant energy transfer between double charged chromium ions and complexes based on crystals’ vacancy defects was made. A correlation between emission and magnetic properties of the d- ions doped samples was established. Based on this correlation a mechanism explaining the concentration quench of the emission was proposed. It was found that f-ions bind electrically active shallow and deep donor and acceptor states of background impurity to electrically neutral complexes. This may be observed as “purification” of ZnSe crystals by doping with the rare-earth elements, resulting i tendency of the properties of f-ion doped crystals to the properties of intrinsic crystals, but with smaller concentration of uncontrolled native and impurity defects. A possible interpretation of this effect was proposed. It was shown that selenium substituting impurities decrease efficiency of the Yb doping. Based on this experimental results an attempt to determine ytterbium ion surroundings in the crystal lattice was made. It was shown that co-doping of zinc selenide crystals with the d- and f- ions leads to the combination of the impurities influence on the material’s properties. On the basis of obtained data an interaction mechanism of the d- and f-elements co-dopants was proposed. Guided by the model of the ytterbium ion incorporation in the selenide sublattice of the ZnSe crystals, an assumption about stabilization of single charged chromium ions in the zinc sublattice crystal nodes, by means of formation of the local charge compensating clusters, was made.