54 resultados para mechanical pre-dewatering
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Kandidaatintyön tavoitteena on esitellä erilaisia metsäteollisuudessa syntyviä lietteitä, niiden ominaisuuksia ja käsittelyä. Lietteenkäsittelytekniikat on jaettu mekaanisiin, termisiin, kemiallisiin ja biologisiin menetelmiin. Lisäksi on tutkittu Metsä Board Simpeleen kartonkitehtaalla syntyvää lietettä ja sen sisältämää energiaa. Tutkimuksia varten kesällä 2013 tehtiin koeajoja ja mittauksia, joiden avulla laskettiin, saadaanko lietteen polttamisesta energiaa, vai onko se vain jätteenhävitysmenetelmä. Koeajojakso oli melko lyhyt (2 viikkoa), mutta näytteitä otettiin tiheästi, kahdesti päivässä. Näin yritettiin vähentää lietteen laadun vaihtelun merkitystä tuloksiin. Tuloksista ilmeni, että koeajojakson aikana lietteestä saatiin energiaa enemmän kuin sen polttamiseen kului. Kävi myös ilmi, että tulokset ovat voimakkaasti riippuvaisia lietteen laadusta ja puristuspaineesta. Tulosten perusteella suunniteltiin uusi, toimivampi mittausjärjestelmä. Lisäksi tehtiin ehdotus lietteenpoltossa tuotetun energian seuraamiseksi lähes reaaliajassa.
Resumo:
Työn tavoitteena on kartoittaa yhdyskuntalietteen ja kierrätys- sekä biopolttoaineiden käsittelyä ja polttoa lietteenpolttolaitoksen tarpeita ajatellen. Lietteen käsittelyketjun ja kierrätys- sekä biopolttoaineketjujen tekninen tarkastelu on siis työn keskeinen tavoite. Lisäksi lasketaan polttolaitoksen suurimpia mahdollisia investointikustannuksia eri polttoainevaihtoehdoilla. Työssä tehdään muun ohella case-tarkastelua Kaakkois- Suomen alueeseen liittyen. Tavoitteena on muodostaa tarkoitukseen soveltuva polttoaineratkaisu kullekin tapauk-selle. Työn alkuosassa tutustutaan yleisesti lietteeseen sekä polttoaineen että jätteen roolissa. Tarkastelu sisältää tietoja lietteen ominaisuuksista sekä lietteenkäsittelyssä olennaisista lainsäädännöllisistä seikoista. Samoin katsastetaan hieman lietteen esikäsittelyä, mekaanista vedenerotusta, termistä kuivausta ja polttoa tarkastellaan yleisessä valossa. Lisäksi alkuosassa keskitytään eri bio- jakierrätyspolttoainevaihtoehtoihin tarkastelemalla niiden yleisyyttä polttoaineena sekä esittelemällä niiden käsittelyketjuja. Työn loppupuoliskolla kiinnitetään huomiota case tapausten avulla polttolaitoksesta saataviin tuottoihin sekä millaisen liikkumavaran eri polttoainevaihtoehdot investointien osalta sallivat. Case-tapauksissa pohditaan Kymenlaakson ja Etelä-Karjalan paikallisia lietteen-polttomahdollisuuksia yhdistettynä kierrätys- tai biopolttoaineisiin. Mekaanisesti kuivattua lietettä käsitellään kyseisissä tapauksissa vuosittain 6000 t ja 15 000 t. Lietteen polton tuottama sähkö- ja lämpöteho näyttävät riippuvan voimakkaasti lietteen kuiva-ainepitoisuudesta, eivät niinkään lietteen muista ominaisuuksista. Lisäksi joko bio- tai kierrätyspolttoaineella saadaan sähkön- ja lämmöntuotantoa nostettua huomattavasti.
Resumo:
The aim of this thesis was to produce information for the estimation of the flow balance of wood resin in mechanical pulping and to demonstrate the possibilities for improving the efficiency of deresination in practice. It was observed that chemical changes in wood resin take place only during peroxide bleaching, a significant amount of water dispersed wood resin is retained in the pulp mat during dewatering and the amount of wood resin in the solid phase of the process filtrates is very small. On the basis of this information there exist three parameters related to behaviour of wood resin that determine the flow balance in the process: 1. The liberation of wood resin to the pulp water phase 2. Theretention of water dispersed wood resin in dewatering 3. The proportion of wood resin degraded in the peroxide bleaching The effect of different factors on these parameters was evaluated with the help of laboratory studies and a literature survey. Also, information related to the values of these parameters in existing processes was obtained in mill measurements. With the help of this information, it was possible to evaluate the deresination efficiency and the effect of different factors on this efficiency in a pulping plant that produced low-freeness mechanical pulp. This evaluation showed that the wood resin content of mechanical pulp can be significantly decreased if there exists, in the process, a peroxide bleaching and subsequent washing stage. In the case of an optimal process configuration, as high as a 85 percent deresination efficiency seems to be possible with a water usage level of 8 m3/o.d.t.
Resumo:
The amount of water available is usually restricted, which leads to a situation where a complete understanding of the process, including water circulations and the influence of water components, is essential. The main aim of this thesis was to clarify the possibilities for the efficient use of residual peroxide by means of water circulation rearrangements. Rearranging water circulations and the reduction of water usage may cause new problems, such as metal induced peroxide decomposition that needs to be addressed. This thesis introduces theoretical methods of water circulations to combine two variables; effective utilization of residual peroxide and avoiding manganese in the alkaline peroxide bleaching stage. Results are mainly based on laboratory and mill site experiments concerning the utilization of residual peroxide. A simulation model (BALAS) was used to evaluate the manganese contents and residual peroxide doses. It was shown that with optimum recirculation of residual peroxide the brightness can be improved or chemical costs can be decreased. From the scientific perspective, it was also very important to discover that recycled peroxide was more effective pre-bleaching agent compared to fresh peroxide. This can be due to the organic acids i.e. per acetic acid in wash press filtrate that have been formed in alkaline bleaching stage. Even short retention time was adequate and the activation of residual peroxide using sodium hydroxide was not necessary. There are several possibilities for using residual peroxide in practice regarding bleaching. A typical modern mechanical pulping process line consist of defibering, screening, a disc filter, a bleach press, high consistency (HC) peroxide bleaching and a wash press. Furthermore there usually is not a particular medium consistency (MC) pre-bleaching stage that includes additional thickening equipment. The most advisable way to utilize residual peroxide in this kind of process is to recycle the wash press filtrate to the dilution of disc filter pulp (low MC pre-bleaching stage). An arrangement such as this would be beneficial in terms of the reduced convection of manganese to the alkaline bleaching stage. Manganese originates from wood material and will be removed to the water phase already in the early stages of the process. Recycling residual peroxide prior to the disc filter is not recommended because of low consistencies. Regarding water circulations, the novel point of view is that, it would be beneficial to divide water circulations into two sections and the critical location for the division is the disc filter. Both of these two sections have their own priority. Section one before the disc filter: manganese removal. Section two after the disc filter: brightening of pulp. This division can be carried out if the disc filter pulp is diluted only by wash press filtrate before the MC storage tower. The situation is even better if there is an additional press after the disc filter, which will improve the consistency of the pulp. This has a significant effect on the peroxide concentration in the MC pre-bleaching stage. In terms of manganese content, it is essential to avoid the use of disc filter filtrate in the bleach press and wash press showers. An additional cut-off press would also be beneficial for manganese removal. As a combination of higher initial brightness and lower manganese content, the typical brightness increase varies between approximately 0.5 and 1% ISO units after the alkaline peroxide bleaching stage. This improvement does not seem to be remarkable, but as it is generally known, the final brightness unit is the most expensive and difficult to achieve. The estimation of cost savings is not unambiguous. For example in GW/TMP mill case 0.6% ISO units higher final brightness gave 10% savings in the costs of bleaching chemicals. With an hypothetical 200 000 ton annual production, this means that the mill could save in the costs of bleaching chemicals more than 400 000 euros per year. In general, it can be said that there were no differences between the behavior of different types of processes (GW, PGW, TMP and BCTMP). The enhancement of recycling gave a similar response in all cases. However, we have to remember that the utilization of residual peroxide in older mills depends a great deal on the process equipment, the amount of water available and existing pipeline connections. In summary, it can be said that processes are individual and the same solutions cannot be applied to all cases.
Resumo:
Original sludge from wastewater treatment plants (WWTPs) usually has a poor dewaterability. Conventionally, mechanical dewatering methods are used to increase the dry solids (DS) content of the sludge. However, sludge dewatering is an important economic factor in the operation of WWTPs, high water content in the final sludge cake is commonly related to an increase in transport and disposal costs. Electro‐dewatering could be a potential technique to reduce the water content of the final sludge cake, but the parameters affecting the performance of electro‐dewatering and the quality of the resulting sludge cake, as well as removed water, are not sufficiently well known. In this research, non‐pressure and pressure‐driven experiments were set up to investigate the effect of various parameters and experimental strategies on electro‐dewatering. Migration behaviour of organic compounds and metals was also studied. Application of electrical field significantly improved the dewatering performance in comparison to experiments without electric field. Electro‐dewatering increased the DS content of the sludge from 15% to 40 % in non‐pressure applications and from 8% to 41% in pressure‐driven applications. DS contents were significantly higher than typically obtained with mechanical dewatering techniques in wastewater treatment plant. The better performance of the pressure‐driven dewatering was associated to a higher current density at the beginning and higher electric field strength later on in the experiments. The applied voltage was one of the major parameters affecting dewatering time, water removal rate and DS content of the sludge cake. By decreasing the sludge loading rate, higher electrical field strength was established between the electrodes, which has a positive effect on an increase in DS content of the final sludge cake. However interrupted voltage application had anegative impact on dewatering in this study, probably because the off‐times were too long. Other factors affecting dewatering performance were associated to the original sludge characteristics and sludge conditioning. Anaerobic digestion of the sludge with high pH buffering capacity, polymer addition and freeze/thaw conditioning had a positive impact on dewatering. The impact of pH on electro‐dewatering was related to the surface charge of the particles measured as zeta‐potential. One of the differences between electro‐dewatering and mechanical dewatering technologies is that electro‐dewatering actively removes ionic compounds from the sludge. In this study, dissolution and migration of organic compounds (such as shortchain fatty acids), macro metals (Na, K, Ca, Mg, Fe) and trace metals (Ni, Mn, Zn, Cr) was investigated. The migration of the metals depended on the fractionation and electrical field strength. These compounds may have both negative and positive impacts on the reuse and recycling of the sludge and removed water. Based on the experimental results of this study, electro‐dewatering process can be optimized in terms of dewatering time, desired DS content, power consumption and chemical usage.
Resumo:
Waste incineration is becoming increasingly widespread method of waste disposal in China. Incineration plants mostly use grate and circular fluidized bed (CFB) technology. Waste combustion in cement production is also beginning to gradually increase. However, Chinese waste composition is causing problems for the energy utilization. Mechanical waste pre-treatment optimizes the combustion process and facilitates the energy recovery. The objective of this study is to identify how Western waste pre-treatment manufacturer could operate in Chinese markets. Chinese waste management industry is reviewed via PESTEL analysis. The current state and future predictions of grate and CFB incineration as well as cement manufacturing are monitored. Grate combustion, which requires lesser waste pre-treatment, is becoming more common at the expense of CFB incineration in China. The most promising future for waste treatment is in cement production industry. Waste treatment equipment manufacturer should try to create pilot projects with biggest cement producers with a view of growing co-operation in the future.
Resumo:
Vastine Pekka Sammallahden artikkeliin Language and roots Congressus internationalis Fenno-Ugristarum (1995): Congressus octavus internationalis Fenno-Ugristarum, Jyväskylä 10.-15.8.1995. - Jyväskylä : Moderatores. ISBN 952-90-6684-8. Pars 1 : Orationes plenariae et conspectus quinquennales, s. 143-153
Resumo:
Selostus: Hiehojen elopainon määrittäminen mittauksin alkukasvatusvaiheessa
Resumo:
Selostus: Kolme viljojen mekaanista rikkakasvintorjuntamentelmää
Resumo:
Selostus: Sisäruokintakauden energiamäärien vaikutus risteytysemolehmien tuotantoon
Resumo:
Abstract