8 resultados para magnetic core losses
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Diplomityössä perehdytään tuuliturbineissa käytettyjen täystehokonvertterien tehohäviöihin ja hyötysuhteeseen. Täystehokonvertterissa generaattorin tuottama sähköteho tasasuunnataan hyvällä hyötysuhteella aktiivisella geenraattorisillalla konvertterin välipiiriin ja edelleen vaihtosuunnataan aktiivisella verkkovaihtosuuntaajasillalla siirtoverkkoon. Työn tarkoituksena on antaa yleiskuva tehohäviöiden jakautumisesta ja yksinkertaistaa niiden laskentaa. Häviömekanismit ja häviöiden määräytyminen esitellään pääkomponenttitasolla. Tehohäviöiden osalta keskitytään erityisesti muuntajateräksestä valmistettujen sinisuotimien ja du/dt-suotimien rautahäviöihin. Ongelmana rautahäviöiden määrittämisessä on korkeilla taajuuksilla tapahtuvat häviöt, joiden laskentaan ei ole yleensä saatavilla tarvittavia materiaaliparametrejä. Tehohäviöiden laskentaa varten toteutettu laskentasovellus on esitelty periaatteellisina vuokaavioina ja sovelluksella saatavia tuloksia on esitetty ja vertailtu mitattuihin tuloksiin.
Resumo:
The integration of electric motors and industrial appliances such as pumps, fans, and compressors is rapidly increasing. For instance, the integration of an electric motor and a centrifugal pump provides cost savings and improved performance characteristics. Material cost savings are achieved when an electric motor is integrated into the shaft of a centrifugal pump, and the motor utilizes the bearings of the pump. This arrangement leads to a smaller configuration that occupies less floor space. The performance characteristics of a pump drive can be improved by using the variable-speed technology. This enables the full speed control of the drive and the absence of a mechanical gearbox and couplers. When using rotational speeds higher than those that can be directly achieved by the network frequency the structure of the rotor has to be mechanically durable. In this thesis the performance characteristics of an axial-flux solid-rotor-core induction motor are determined. The motor studied is a one-rotor-one-stator axial-flux induction motor, and thus, there is only one air-gap between the rotor and the stator. The motor was designed for higher rotational speeds, and therefore a good mechanical strength of the solid-rotor-core rotor is required to withstand the mechanical stresses. The construction of the rotor and the high rotational speeds together produce a feature, which is not typical of traditional induction motors: the dominating loss component of the motor is the rotor eddy current loss. In the case of a typical industrial induction motor instead the dominating loss component is the stator copper loss. In this thesis, several methods to decrease the rotor eddy current losses in the case of axial-flux induction motors are presented. A prototype motor with 45 kW output power at 6000 min-1 was designed and constructed for ascertaining the results obtained from the numerical FEM calculations. In general, this thesis concentrates on the methods for improving the electromagnetic properties of an axial-flux solid-rotor-core induction motor and examines the methods for decreasing the harmonic eddy currents of the rotor. The target is to improve the efficiency of the motor and to reach the efficiency standard of the present-day industrial induction motors equipped with laminated rotors.
Resumo:
The need for high performance, high precision, and energy saving in rotating machinery demands an alternative solution to traditional bearings. Because of the contactless operation principle, the rotating machines employing active magnetic bearings (AMBs) provide many advantages over the traditional ones. The advantages such as contamination-free operation, low maintenance costs, high rotational speeds, low parasitic losses, programmable stiffness and damping, and vibration insulation come at expense of high cost, and complex technical solution. All these properties make the use of AMBs appropriate primarily for specific and highly demanding applications. High performance and high precision control requires model-based control methods and accurate models of the flexible rotor. In turn, complex models lead to high-order controllers and feature considerable computational burden. Fortunately, in the last few years the advancements in signal processing devices provide new perspective on the real-time control of AMBs. The design and the real-time digital implementation of the high-order LQ controllers, which focus on fast execution times, are the subjects of this work. In particular, the control design and implementation in the field programmable gate array (FPGA) circuits are investigated. The optimal design is guided by the physical constraints of the system for selecting the optimal weighting matrices. The plant model is complemented by augmenting appropriate disturbance models. The compensation of the force-field nonlinearities is proposed for decreasing the uncertainty of the actuator. A disturbance-observer-based unbalance compensation for canceling the magnetic force vibrations or vibrations in the measured positions is presented. The theoretical studies are verified by the practical experiments utilizing a custom-built laboratory test rig. The test rig uses a prototyping control platform developed in the scope of this work. To sum up, the work makes a step in the direction of an embedded single-chip FPGA-based controller of AMBs.
Resumo:
One of the targets of the climate and energy package of the European Union is to increase the energy efficiency in order to achieve a 20 percent reduction in primary energy use compared with the projected level by 2020. The energy efficiency can be improved for example by increasing the rotational speed of large electrical drives, because this enables the elimination of gearboxes leading to a compact design with lower losses. The rotational speeds of traditional bearings, such as roller bearings, are limited by mechanical friction. Active magnetic bearings (AMBs), on the other hand, allow very high rotational speeds. Consequently, their use in large medium- and high-speed machines has rapidly increased. An active magnetic bearing rotor system is an inherently unstable, nonlinear multiple-input, multiple-output system. Model-based controller design of AMBs requires an accurate system model. Finite element modeling (FEM) together with the experimental modal analysis provides a very accurate model for the rotor, and a linearized model of the magneticactuators has proven to work well in normal conditions. However, the overall system may suffer from unmodeled dynamics, such as dynamics of foundation or shrink fits. This dynamics can be modeled by system identification. System identification can also be used for on-line diagnostics. In this study, broadband excitation signals are adopted to the identification of an active magnetic bearing rotor system. The broadband excitation enables faster frequency response function measurements when compared with the widely used stepped sine and swept sine excitations. Different broadband excitations are reviewed, and the random phase multisine excitation is chosen for further study. The measurement times using the multisine excitation and the stepped sine excitation are compared. An excitation signal design with an analysis of the harmonics produced by the nonlinear system is presented. The suitability of different frequency response function estimators for an AMB rotor system are also compared. Additionally, analytical modeling of an AMB rotor system, obtaining a parametric model from the nonparametric frequency response functions, and model updating are discussed in brief, as they are key elements in the modeling for a control design. Theoretical methods are tested with a laboratory test rig. The results conclude that an appropriately designed random phase multisine excitation is suitable for the identification of AMB rotor systems.
Resumo:
The aim of this thesis research was to gain a better understanding of the emplacement of rapakivi granite intrusions, as well as the emplacement of gold-bearing hydrothermal fluids in structurally controlled mineralizations. Based on investigations of the magnetic fabric, the internal structures could be analysed and the intrusion mechanisms for rapakivi granite intrusions and respectively different deformation stages within gold-bearing shear and fault zones identified. Aeromagnetic images revealed circular structures within the rapakivi granite batholiths of Wiborg, Vehmaa and Åland. These circular structures represent intrusions that eventually build up these large batholiths. The rapakivi granite intrusions of Vehmaa, Ruotsinpyhtää within the Wiborg batholith and Saltvik intrusions within the Åland batholith all show bimodal magnetic susceptibilities with paramagnetic and ferromagnetic components. The distribution of the bimodality is related to different magma batches of the studied intrusions. The anisotropy of magnetic susceptibility (AMS) reveals internal structures that cannot be studied macroscopically or by microscope. The Ruotsinpyhtää and Vehmaa intrusions represent similar intrusion geometries, with gently to moderately outward dipping magnetic foliations. In the case of Vehmaa, the magnetic lineations are gently plunging and trend in the directions of the slightly elongated intrusion. The magnetic lineations represent magma flow. The shapes of the AMS ellipsoids are also more planar (oblate) in the central part of the intrusion, whereas they become more linear (prolate) near the margin. These AMS results, together with field observations, indicate that the main intrusion mechanism has involved the subsidence of older blocks with successive intrusion of fractionated magma during repeated cauldron subsidence. The Saltvik area within the Åland batholith consists of a number of smaller elliptical intrusions of different rapakivi types forming a multiple intrusive complex. The magnetic fabric shows a general westward dipping of the pyterlite and eastward dipping of the contiguous even-grained rapakivi granite, which indicates a central inflow of magma batches towards the east and west resulting from a laccolitic emplacement of magma batches, while the main mechanism for space creation was derived from subsidence. The magnetic fabric of structurally controlled gold potential shear and fault zones in Jokisivu, Satulinmäki and Koijärvi was investigated in order to describe the internal structures and define the deformation history and emplacement of hydrothermal fluids. A further aim of the research was to combine AMS studies with palaeomagnetic methods to constrain the timing for the shearing event relative to the precipitation of ferromagnetic minerals and gold. All of the studied formations are dominated by monoclinic pyrrhotite. The AMS directions generally follow the tectonic structures within the formations. However, internal variations in the AMS direction as well as the shapes of the AMS ellipsoids are observed within the shear zones. In Jokisivu and Satulinmäki in particular, the magnetic signatures of the shear zone core differ from the margins. Furthermore, the shape of the magnetic fabric in the shear zone core of Jokisivu is dominated by oblate shapes, whereas the margins exhibit prolate shapes. These variations indicate a later effect of the hydrothermal fluids on the general shear event. The palaeo-magnetic results reveal a deflection from the original Svecofennian age geomagnetic direction. These results, coupled with correlations between the orientation of the NRM vectors and the magnetic and rock fabrics, imply that the gold-rich hydrothermal fluids were emplaced pre/syntectonically during the late stages of the Svecofennian orogeny.
Resumo:
The superconducting gap is a basic character of a superconductor. While the cuprates and conventional phonon-mediated superconductors are characterized by distinct d- and s-wave pairing symmetries with nodal and nodeless gap distributions respectively, the superconducting gap distributions in iron-based superconductors are rather diversified. While nodeless gap distributions have been directly observed in Ba1–xKxFe2As2, BaFe2–xCoxAs2, LiFeAs, KxFe2–ySe2, and FeTe1–xSex, the signatures of a nodal superconducting gap have been reported in LaOFeP, LiFeP, FeSe, KFe2As2, BaFe2–xRuxAs2, and BaFe2(As1–xPx)2. Due to the multiplicity of the Fermi surface in these compounds s± and d pairing states can be both nodeless and nodal. A nontrivial orbital structure of the order parameter, in particular the presence of the gap nodes, leads to effects in which the disorder is much richer in dx2–y2-wave superconductors than in conventional materials. In contrast to the s-wave case, the Anderson theorem does not work, and nonmagnetic impurities exhibit a strong pair-breaking influence. In addition, a finite concentration of disorder produces a nonzero density of quasiparticle states at zero energy, which results in a considerable modification of the thermodynamic and transport properties at low temperatures. The influence of order parameter symmetry on the vortex core structure in iron-based pnictide and chalcogenide superconductors has been investigated in the framework of quasiclassical Eilenberger equations. The main results of the thesis are as follows. The vortex core characteristics, such as, cutoff parameter, ξh, and core size, ξ2, determined as the distance at which density of the vortex supercurrent reaches its maximum, are calculated in wide temperature, impurity scattering rate, and magnetic field ranges. The cutoff parameter, ξh(B; T; Г), determines the form factor of the flux-line lattice, which can be obtained in _SR, NMR, and SANS experiments. A comparison among the applied pairing symmetries is done. In contrast to s-wave systems, in dx2–y2-wave superconductors, ξh/ξc2 always increases with the scattering rate Г. Field dependence of the cutoff parameter affects strongly on the second moment of the magnetic field distributions, resulting in a significant difference with nonlocal London theory. It is found that normalized ξ2/ξc2(B/Bc2) dependence is increasing with pair-breaking impurity scattering (interband scattering for s±-wave and intraband impurity scattering for d-wave superconductors). Here, ξc2 is the Ginzburg-Landau coherence length determined from the upper critical field Bc2 = Φ0/2πξ2 c2, where Φ0 is a flux quantum. Two types of ξ2/ξc2 magnetic field dependences are obtained for s± superconductors. It has a minimum at low temperatures and small impurity scattering transforming in monotonously decreasing function at strong scattering and high temperatures. The second kind of this dependence has been also found for d-wave superconductors at intermediate and high temperatures. In contrast, impurity scattering results in decreasing of ξ2/ξc2(B/Bc2) dependence in s++ superconductors. A reasonable agreement between calculated ξh/ξc2 values and those obtained experimentally in nonstoichiometric BaFe2–xCoxAs2 (μSR) and stoichiometric LiFeAs (SANS) was found. The values of ξh/ξc2 are much less than one in case of the first compound and much more than one for the other compound. This is explained by different influence of two factors: the value of impurity scattering rate and pairing symmetry.
Resumo:
The estimation of losses plays a key role in the process of building any electrical machine. How to estimate those losses while designing any machine; by obtaining the characteristic of the electrical steel from the catalogue and calculate the losses. However, this way is inaccurate since the electrical steel performs several manufacturing processes during the process of building any machine, which affects directly the magnetic property of the electrical steel and accordingly the characteristic of the electrical steel will be affected. That means the B–H curve of the steel that was obtained from the catalogue will be changed. Moreover, during loading and rotating the machine, some important changes occur to the B–H characteristic of the electrical steel such as the stress on the laminated iron. Accordingly, the pre-estimated losses are completely far from the actual losses because they were estimated based on the data of the electrical steel obtained from the catalogue. So in order to estimate the losses precisely significant factors of the manufacturing processes must be included. The paper introduces the systematic estimation of the losses including the effect of one of the manufacturing factors. Similarly, any other manufacturing factor can be included in the pre-designed losses estimations.
Resumo:
Permanent magnet materials are nowadays widely used in the electrical machine manufacturing industry. Eddy current loss models of permanent magnets used in electrical machines are frequently discussed in research papers. In magnetic steel materials we have, in addition to eddy current losses, hysteresis losses when AC or a rotating flux travels through the material. Should a similar phenomenon also be taken into account in calculating the losses of permanent magnets? Actually, every now and then authors seem to assume that some significant hysteresis losses are present in rotating machine PMs. This paper studies the mechanisms of possible hysteresis losses in PMs and their role in PMs when used in rotating electrical machines.