9 resultados para lung metastasis
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This thesis focuses on tissue inhibitor of metalloproteinases 4 (TIMP4) which is the newest member of a small gene and protein family of four closely related endogenous inhibitors of extracellular matrix (ECM) degrading enzymes. Existing data on TIMP4 suggested that it exhibits a more restricted expression pattern than the other TIMPs with high expression levels in heart, brain, ovary and skeletal muscle. These observations and the fact that the ECM is of special importance to provide the cardiovascular system with structural strength combined with elasticity and distensibility, prompted the present molecular biologic investigation on TIMP4. In the first part of the study the murine Timp4 gene was cloned and characterized in detail. The structure of murine Timp4 genomic locus resembles that in other species and of the other Timps. The highest Timp4 expression was detected in heart, ovary and brain. As the expression pattern of Timp4 gives only limited information about its role in physiology and pathology, Timp4 knockout mice were generated next. The analysis of Timp4 knockout mice revealed that Timp4 deficiency has no obvious effect on the development, growth or fertility of mice. Therefore, Timp4 deficient mice were challenged using available cardiovascular models, i.e. experimental cardiac pressure overload and myocardial infarction. In the former model, Timp4 deficiency was found to be compensated by Timp2 overexpression, whereas in the myocardial infarct model, Timp4 deficiency resulted in increased mortality due to increased susceptibility for cardiac rupture. In the wound healing model, Timp4 deficiency was shown to result in transient retardation of re-epithelialization of cutaneous wounds. Melanoma tumor growth was similar in Timp4 deficient and control mice. Despite of this, lung metastasis of melanoma cells was significantly increased in Timp4 null mice. In an attempt to translate the current findings to patient material, TIMP4 expression was studied in human specimens representing different inflammatory cardiovascular pathologies, i.e. giant cell arteritis, atherosclerotic coronary arteries and heart allografts exhibiting signs of chronic rejection. The results showed that cardiovascular expression of TIMP4 is elevated particularly in areas exhibiting inflammation. The results of the present studies suggest that TIMP4 has a special role in the regulation of tissue repair processes in the heart, and also in healing wounds and metastases. Furthermore, evidence is provided suggesting the usefulness of TIMP4 as a novel systemic marker for vascular inflammation.
Resumo:
Prostate cancer is generally a slowly developing disease. However, some cancers develop into an aggressive, metastasic and consequently life-threatening state. The mechanisms of prostate cancer spread are still mainly unidentified but hormones and growth factors are known to been involved. The forming of new blood vessels i.e. angiogenesis is crucial for tumor growth. Blood vessels and lymphatic vessels are also prominent routes for metastasis. Both angiogenic and lymphangiogenic factors are overexpressed in prostate cancer. We established an in vivo model to study the factors effecting human prostate cancer growth and metastasis. Tumors were produced by the orthotopic inoculation of PC-3 prostate cancer cells into the prostates of immunodeficient mice. Like human prostate tumors, these tumors metastasized to prostate-draining lymph nodes. Treatment of the mice with the bisphosphonate alendronate known to decrease prostate cancer cell invasion in vitro inhibited metastasis and decreased tumor growth. Decreased tumor growth was associated with decreased angiogenesis and increased apoptosis of tumor cells. To elucidate the role of angiogenesis in prostate cancer progression, we studied the growth of orthotopic PC-3 tumors overexpressing fibroblast growth factor b (FGF8b) known to be expressed in human prostate cancer. FGF8b increased tumor growth and angiogenesis, which were both associated with a characteristic gene expression pattern. To study the role of lymphangiogenesis, we produced orthotopic PC-3 tumors overexpressing vascular endothelial growth factor C (VEGF-C). Blocking of VEGF-C receptor (VEGFR3) completely inhibited lymph node metastasis whereas overexpression of VEGF-C increased tumor growth and angiogenesis. VEGF-C also increased lung metastases but, surprisingly, decreased spread to lymph nodes. This suggests that the expanded vascular network was primarily used as a route for tumor spreading. Finally, the functionality of the capillary network in subcutaneous FGF8b-overexpressing PC-3 tumors was compared to that of tumors overexpressing VEGF. Both tumors showed angiogenic morphology and grew faster than control tumors. However, FGF8b tumors were hypoxic and their perfusion and oxygenation was poor compared with VEGF tumors. This suggests that the growth advantage of FGF8b tumors is more likely due to stimulated proliferation than effective angiogenesis. In conclusion, these results show that orthotopic prostate tumors provide a useful model to explore the mechanisms of prostate cancer growth and metastasis.
Resumo:
Acute lung injury (ALI) is a syndrome of acute hypoxemic respiratory failure with bilateral pulmonary infiltrates that is not caused by left atrial hypertension. Since there is no effective treatment available, this frequent clinical syndrome significantly contributes to mortality of both medical and surgical patients. Great majority of the patients with the syndrome suffers from indirect ALI caused by systemic inflammatory response syndrome (SIRS). Sepsis, trauma, major surgery and severe burns, which represent the most common triggers of SIRS, often induce an overwhelming inflammatory reaction leading to dysfunction of several vital organs. Studies of indirect ALI due to SIRS revealed that respiratory dysfunction results from increased permeability of endothelium. Disruption of endothelial barrier allows extravasation of protein-rich liquid and neutrophils to pulmonary parenchyma. Both under normal conditions and in inflammation, endothelial barrier function is regulated by numerous mechanisms. Endothelial enzymes represent one of the critical control points of vascular permeability and leukocyte trafficking. Some endothelial enzymes prevent disruption of endothelial barrier by production of anti-inflammatory substances. For instance, nitric oxide synthase (NOS) down-regulates leukocyte extravasation in inflammation by generation of nitric oxide. CD73 decreases vascular leakage and neutrophil emigration to inflamed tissues by generation of adenosine. On the other hand, vascular adhesion protein-1 (VAP-1) mediates leukocyte trafficking to the sites of inflammation both by generation of pro-inflammatory substances and by physically acting as an adhesion molecule. The aims of this study were to define the role of endothelial enzymes NOS, CD73 and VAP-1 in acute lung injury. Our data suggest that increasing substrate availability for NOS reduces both lung edema and neutrophil infiltration and this effect is not enhanced by concomitant administration of antioxidants. CD73 protects from vascular leakage in ALI and its up-regulation by interferon-β represents a novel therapeutic strategy for treatment of this syndrome. Enzymatic activity of VAP-1 mediates neutrophil infiltration in ALI and its inhibition represents an attractive approach to treat ALI.
Resumo:
Integrins are a family of transmembrane glycoproteins, composed of two different subunits (alpha and beta). Altered expression of integrins in tumor cells contributes to metastasis tendency by influencing on the cells‟ attachment to adjacent cells and their migration. Viral pathogens, including certain enteroviruses, use integrins as receptors. Enteroviruses have also been suggested to be involved in the etiopathogenesis of type 1 diabetes. The study focuses on the role of integrins in the pathogenesis of metastasis to cortical bone and on type 1 diabetes (T1D) and echovirus 1 infection. In the first part of the thesis, the role of different integrins in the initial attachment of MDA-MD-231 breast cancer cells to bovine cortical bone disks was studied. A close correlation between alpha2beta1 and alpha3beta1 integrin receptor expression and the capability of the tumor to attach to bone were observed. In the second part, a possible correlation between susceptibility to enterovirus infections in diabetic children and differences in enterovirus receptor genes, including certain integrins, was investigated. In parallel, virus-specific neutralizing antibodies and diabetic risk alleles were studied. In the diabetic group, an amino acid change was detected in the polio virus receptor and the neutralizing antibody titers against echovirus 30 were lower. However, to obtain statistically sustainable results, a larger number of individuals should be analyzed. Echovirus 1 (EV1) enters cells by attaching to the alpha2I domain of the alpha2beta1 integrin. In the third part EV1 was shown to attach to a chimeric receptor construct of the transferrin receptor and the alpha2I domain and to enter cells through clathrin-mediated endocytosis that is normally not used by the virus. The chimeric receptor was recycled to the plasma membrane, whereas the virus remained in intracellular vesicles. The virus replication cycle was initiated in these cells, suggesting that evolution pressure could possibly cause the virus to evolve to use a different entry mechanism. Moreover, a cDNA microarray analysis of host gene expression during EV1 replication showed that 0.53% of the total genes, including several immediate early genes, were differently expressed.
Resumo:
Breast cancer that has metastasized to bone is currently an incurable disease, causing significant morbidity and mortality. The aim of this thesis work was to elucidate molecular mechanisms of bone metastasis and thereby gain insights into novel therapeutic approaches. First, we found that L‐serine biosynthesis genes, phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1) and phosphoserine phosphatase (PSPH), were up‐regulated in highly bone metastatic MDA‐MB‐231(SA) cells as compared with the parental breast cancer cell line. Knockdown of serine biosynthesis inhibited proliferation of MDA‐MB‐231(SA) cells, and L‐serine was essential for the formation of bone resorbing osteoclasts. Clinical data demonstrated that high expression of PHGDH and PSAT1 was associated with decreased relapse‐free and overall survival and with features typical of poor outcome in breast cancer. Second, RNA interference screening pointed out heparan sulfate 6‐O‐sulfotransferase 2 (HS6ST2) as a critical gene for transforming growth factor β (TGF‐β)‐induced interleukin 11 (IL‐11) production in MDA‐MB‐231(SA) cells. Exogenous heparan sulfate glycosaminoglycans heparin and K5‐NSOS also inhibited TGF‐β‐induced IL‐11 production in MDA‐MB‐231(SA) cells. Furthermore, K5‐NSOS decreased osteolytic lesion area and tumor burden in bone in mice. Third, we discovered that the microRNAs miR‐204, ‐211 and ‐379 inhibited IL‐11 expression in MDA‐MB‐231(SA) cells through direct targeting of the IL‐11 mRNA. MiR‐379 also inhibited Smad‐mediated signaling. Gene expression profiling of miR‐204 and ‐379 transfected cells indicated that these microRNAs down‐regulate several bone metastasis‐relevant genes, including prostaglandin‐endoperoxide synthase 2 (PTGS2). Taken together, this study identified three potential treatment strategies for bone metastatic breast cancer: inhibition of serine biosynthesis, heparan sulfate glycosaminoglycans and restoration of miR‐204/‐211/‐379.
Resumo:
C-Jun N-terminal kinase (JNK) is traditionally recognized as a crucial factor in stress response and inducer of apoptosis upon various stimulations. Three isoforms build the JNK subfamily of MAPK; generally expressed JNK1 and JNK2 and brain specific JNK3. Degenerative potency placed JNK in the spotlight as potential pharmacological option for intervention. Unfortunately, adverse effects of potential drugs and observation that expression of only JNK2 and JNK3 are induced upon stress, restrained initial enthusiasm. Notably, JNK1 demonstrated atypical high constitutive activity in neurons that is not responsive to cellular stresses and indicated existence of physiological activity. This thesis aimed at revealing the physiological functions of JNK1 in actin homeostasis through novel effector MARCKS-Like 1 (MARCKSL1) protein, neuronal trafficking mediated by major kinesin-1 motor protein and microtubule (MT) dynamics via STMN2/SCG10. The screen for novel physiological JNK substrates revealed specific phosphorylation of C-terminal end of MARCKSL1 at S120, T148 and T183 both ex vivo and in vitro. By utilizing site-specific mutagenesis, various actin dynamics and migrations assays we were able to demonstrate that JNK1 phosphorylation specifically facilitates F-actin bundling and thus filament stabilisation. Consecutively, this molecular mechanism was proved to enhance formation of filopodia; cell surface projections that allow cell sensing surrounding environment and migrate efficiently. Our results visualize JNK dependent and MARCKSL1 executed induction of filopodia in neurons and fibroblast indicating general mechanism. Subsequently, inactivation of JNK action on MARCKSL1 shifts cellular actin machinery into lamellipodial dynamic arrangement. Tuning of actin cytoskeleton inevitably melds with cell migration. We observed that both active JNK and JNK pseudo-phosphorylated form of MARCKSL1 reduce actin turnover in intact cells leading to overall diminished cell motility. We demonstrate that tumour transformed cells from breast, prostate, lung and muscle-derived cancers upregulate MARCKSL1. We showed on the example of prostate cancer PC-3 cell line that JNK phosphorylation negatively controls MARCKSL1 ability to induce migration, which precedes cancer cell metastasis. The second round of identification of JNK physiological substrates resulted in detection of predominant motor protein kinesin-1 (Kif5). Mass spectrometry detailed analysis showed evident endogenous phosphorylation of kinesin-1 on S176 within motor domain that interacts with MT. In vitro phosphorylation of bacterially expressed kinesin heavy chain by JNK isoforms displayed higher specificity of JNK1 when compared to JNK3. Since, JNK1 is constitutively active in neurons it signified physiological aspect of kinesin-1 regulation. Subsequent biochemical examination revealed that kinesin-1, when not phosphorylated on JNK site, exhibits much higher affinity toward MTs. Expression of the JNK non-phosphorable kinesin-1 mutant in intact cells as well as in vitro single molecule imaging using total internal reflection fluorescence microscopy indicated that the mutant loses normal speed and is not able to move processively into proper cellular compartments. We identify novel kinesin-1 cargo protein STMN2/SCG10, which along with known kinesin-1 cargo BDNF is showing impaired trafficking when JNK activity is inhibited. Our data postulates that constitutive JNK activity in neurons is crucial for unperturbed physiologically relevant transport of kinesin-1 dependant cargo. Additionally, my work helps to validate another novel physiological JNK1 effector STMN2/SCG10 as determinant of axodendritic neurites dynamics in the developing brain through regulation of MT turnover. We show successively that this increased MT dynamics is crucial during developmental radial migration when brain layering occurs. Successively, we are able to show that introduction of JNK phosphorylation mimicking STMN2/SCG10 S62/73D mutant rescues completely JNK1 genetic deletion migration phenotype. We prove that STMN2/SCG10 is predominant JNK effector responsible for MT depolymerising activity and neurite length during brain development. Summarizing, this work describes identification of three novel JNK substrates MARCKSL1, kinesin-1 and STMN2/SCG10 and investigation of their roles in cytoskeleton dynamics and cargo transport. This data is of high importance to understand physiological meaning of JNK activity, which might have an adverse effect during pharmaceutical intervention aiming at blocking pathological JNK action.
Resumo:
Background: Maternal diabetes affects many fetal organ systems, including the vasculature and the lungs. The offspring of diabetic mothers have respiratory adaptation problems after birth. The mechanisms are multifactorial and the effects are prolonged during the postnatal period. An increasing incidence of diabetic pregnancies accentuates the importance of identifying the pathological mechanisms, which cause the metabolic and genetic changes that occur in offspring, born to diabetic mothers. Aims and methods: The aim of this thesis was to determine changes both in human umbilical cord exposed to maternal type 1 diabetes and in neonatal rat lungs after streptozotocin-induced maternal hyperglycemia, during pregnancy. Rat lungs were used as a model for the potential disease mechanisms. Gene expression alterations were determined in human umbilical cords at birth and in rat pup lungs at two week of age. During the first two postnatal weeks, rat lung development was studied morphologically and histologically. Further, the effect of postnatal hyperoxia on hyperglycemia-primed rat lungs was investigated at one week of age to mimic the clinical situation of supplemental oxygen treatment. Results: In the umbilical cord, maternal diabetes had a major negative effect on the expression of genes involved in blood vessel development. The genes regulating vascular tone were also affected. In neonatal rat lungs, intrauterine hyperglycemia had a prolonged effect on gene expression during late alveolarization. The most affected pathway was the upregulation of extracellular matrix proteins. Newborn rat lungs exposed to intrauterine hyperglycemia had thinner saccular walls without changes in airspace size, a smaller relative lung weight and lung total tissue area, and increased cellular apoptosis and proliferation compared to control lungs, possibly reflecting an aberrant maturational adaptation. At one and two weeks of age, cell proliferation and secondary crest formation were accelerated in hyperglycemia-exposed lungs. Postnatal hyperoxic exposure, alone caused arrested alveolarization with thin-walled and enlarged alveoli. In contrast, the dual exposure of intrauterine hyperglycemia and postnatal hyperoxia resulted in the phenotype of thick septa together with arrested alveolarization and decreased number of small pulmonary arteries. Conclusions: Maternal diabetic environment seems to alter the umbilical cord gene expression profile of the regulation of vascular development and function. Fetal hyperglycemia may additionally affect the genetic regulation of the postnatal lung development and may actually induce prolonged structural alterations in neonatal lungs together with a modifying effect on the deleterious pulmonary exposure of postnatal hyperoxia. This, combined with the novel human umbilical cord gene data could serve as stepping stones for future therapies to curb developmental aberrations.
Resumo:
Chronic lung diseases, specifically bronchopulmonary dysplasia (BPD), are still causing mortality and morbidity amongst newborn infants. High protease activity has been suggested to have a deleterious role in oxygen-induced lung injuries. Cathepsin K (CatK) is a potent protease found in fetal lungs, degrading collagen and elastin. We hypothesized that CatK may be an important modulator of chronic lung injury in newborn infants and neonatal mice. First we measured CatK protein levels in repeated tracheal aspirate fluid samples from 13 intubated preterm infants during the first two weeks of life. The amount of CatK at 9-13 days was low in infants developing chronic lung disease. Consequently, we studied CatK mRNA expression in oxygen-exposed wild-type (WT) rats at postnatal day (PN) 14 and found decreased pulmonary mRNA expression of CatK in whole lung samples. Thereafter we demonstrated that CatK deficiency modifies lung development by accelerating the thinning of alveolar walls in newborn mice. In hyperoxia-exposed newborn mice CatK deficiency resulted in increased number of pulmonary foam cells, macrophages and amount of reduced glutathione in lung homogenates indicating intensified pulmonary oxidative stress and worse pulmonary outcome due to CatK deficiency. Conversely, transgenic overexpression of CatK caused slight enlargement of distal airspaces with increased alveolar chord length in room air in neonatal mice. While hyperoxic exposure inhibited alveolarization and resulted in enlarged airspaces in wild-type mice, these changes were significantly milder in CatK overexpressing mice at PN7. Finally, we showed that the expression of macrophage scavenger receptor 2 (MSR2) mRNA was down-regulated in oxygen-exposed CatK-deficient mice analyzed by microarray analysis. Our results demonstrate that CatK seems to participate in normal lung development and its expression is altered during pulmonary injury. In the presence of pulmonary risk factors, like high oxygen exposure, low amount of CatK may contribute to aggravated lung injury while sustained or slightly elevated amount of CatK may even protect the newborn lungs from excessive injury. Besides collagen degrading and antifibrotic function of CatK in the lungs, it is obvious that CatK may affect macrophage activity and modify oxidative stress response. In conclusion, pulmonary proteases, specifically CatK, have distinct roles in lung homeostasis and injury development, and although suggested, broad range inhibition of proteases may not be beneficial in newborn lung injury.
Resumo:
Asthma, COPD, and asthma and COPD overlap syndrome (ACOS) are chronic pulmonary diseases with an obstructive component. In COPD, the obstruction is irreversible and the disease is progressive. The aim of the study was to define and analyze factors that affected disease progression and patients’ well-being, prognosis and mortality in Chronic Airway Disease (CAD) cohort. The main focus was on COPD and ACOS patients. Retrospective data from medical records was combined with genetic and prospective follow-up data. Smoking is the biggest risk factor for COPD and even after the diagnosis of the disease, smoking plays an important role in disease development and patient’s prognosis. Sixty percent of the COPD patients had succeeded in smoking cessation. Patients who had managed to quit smoking had lower mortality rates and less psychiatric diseases and alcohol abuse although they were older and had more cardiovascular diseases than patients who continued smoking. Genetic polymorphism rs1051730 in the nicotinic acethylcholine receptor gene (CHRNA3/5) associated with heavy smoking, cancer prevalence and mortality in two Finnish independent cohorts consisting of COPD patients and male smokers. Challenges in smoking cessation and higher mortality rates may be partly due to individual patient’s genetic composition. Approximately 50% of COPD patients are physically inactive and the proportion was higher among current smokers. Physically active and inactive patients didn’t differ from each other in regard to age, gender or comorbidities. Bronchial obstruction explained inactivity only in severe disease. Subjective sensation of dyspnea, however, had very strong association to inactivity and was also associated to low health related quality of life (HRQoL). ACOS patients had a significantly lower HRQoL than either the patients with asthma or with COPD even though they were younger than COPD patients, had better lung functions and smaller tobacco exposure.